💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、引言
波浪在传播过程中与建筑物或岛屿、海岬等障碍物相遇时,会产生绕射现象。对于半无限防波堤,其绕射问题在水利工程和海洋工程中具有重要意义。本文旨在基于解析解预测恒定深度水中半无限防波堤周围的波浪模式,为工程设计和规划提供理论依据。
二、理论基础
- 波浪绕射原理:波浪绕射是波浪在遇到障碍物时,一部分被阻挡,另一部分绕过障碍物继续传播的现象。波浪绕射与光波绕射原理类似,但港口边界条件复杂,障碍物或建筑物布置形状及反射条件各不相同,因此实际港口的波浪绕射问题也较为复杂。
- 半无限防波堤:半无限防波堤是指长度远大于波浪传播方向上的尺寸的防波堤,可以视为无限长的一部分。在波浪绕射问题中,半无限防波堤常被用作简化模型。
- 解析解:解析解是指通过数学方法求解得到的精确解,可以表示为函数形式。在波浪绕射问题中,解析解可以帮助我们理解波浪与防波堤之间的相互作用机制。
三、研究方法
- 建立数学模型:基于波浪绕射理论,建立半无限防波堤周围的波浪模式数学模型。该模型应考虑波浪的传播方向、波长、波高以及防波堤的尺寸和形状等因素。
- 推导解析解:利用特征函数展开法、摄动法等数学方法,推导半无限防波堤周围的波浪绕射解析解。解析解应能够描述波浪在遇到防波堤时的绕射、反射和透射等现象。
- 数值验证:通过数值模拟方法,对推导得到的解析解进行验证。数值模拟可以考虑更复杂的边界条件和波浪特性,以评估解析解的准确性和适用范围。
四、研究结果
- 波浪绕射模式:通过分析解析解,得到半无限防波堤周围的波浪绕射模式。该模式应能够描述波浪在遇到防波堤时的传播方向变化、波能衰减和动力减弱等现象。
- 波浪绕射系数:计算不同位置处的波浪绕射系数,以表征绕射波高与原始入射波高之间的比值。波浪绕射系数可以帮助我们评估防波堤对波浪的阻挡和绕射效果。
- 影响因素分析:分析波浪入射角、防波堤尺寸、水深比等因素对波浪绕射模式的影响。这些因素的变化可能导致波浪绕射模式的显著变化,因此需要在工程设计和规划中予以考虑。
五、结论与展望
- 结论:本文基于解析解预测了恒定深度水中半无限防波堤周围的波浪模式,得到了波浪绕射模式、波浪绕射系数以及影响因素等方面的结果。这些结果可以为工程设计和规划提供理论依据。
- 展望:未来的研究可以进一步考虑波浪的非线性效应、防波堤的复杂形状以及多防波堤系统的相互作用等问题,以更全面地理解波浪与防波堤之间的相互作用机制。同时,也可以将研究成果应用于实际工程中,以优化防波堤的设计和布局。
📚2 运行结果
部分代码:
[C,h]=contourf(X,Y,Z,[0:.05:.5]);
hold on;
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
axis equal;
axis tight;
colorbar;
xlabel('x/L');
ylabel('y/L');
end
function kd=diffcoef(r,theta,L)
theta0=270/180*pi;
theta=theta./180*pi;
i=sqrt(-1);
k=2*pi/L;
sigma1=2*(k.*r/pi).^(.5).*sin(0.5*(theta-theta0));
sigma2=-2*(k.*r/pi).^(.5).*sin(0.5*(theta+theta0));
kd=ff(sigma1).*exp(-i*k*r.*cos(theta-theta0))+ff(sigma2)*exp(-i*k*r.*cos(theta+theta0));
kd=abs(kd);
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]吴达开.关于透浪防波堤后的波浪绕射计算[J].中国港湾建设, 1989(3):13-20.
[2]程建生,缪国平,尤云祥,等.波浪在V形贯底式防波堤上绕射的解析研究[J].上海交通大学学报, 2005, 39(5):5.
[3]邹国良.基于非静压方程的近岸波浪变形数值模拟研究[D].天津大学,2013.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取