💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
以下为基于5G NR CDL模型对微波和毫米波频段NLOS单链路信道容量估计的研究文档框架及核心内容总结,综合多篇文献及仿真实验结果:(详细文档讲解见第4部分。)
一、研究背景与意义
- 5G高频段需求:毫米波(如28GHz)凭借宽频带特性可显著提升信道容量,但需克服路径损耗、多径衰落等挑战。
- CDL模型价值:3GPP TR 38.901定义的CDL模型支持0.5-100GHz频段,能模拟室内/城市环境中多径传播特性,为NLOS场景提供标准化评估工具。
二、CDL模型关键参数与配置
- 模型类型
- NLOS场景选择:CDL-A/B/C(如CDL-A用于城市微蜂窝NLOS环境)。
- 核心参数:包含簇延迟、路径功率、水平/垂直到达角(AOA/ZOA)及发射角(AOD/ZOD),支持24条多径簇模拟。
三、信道容量估计方法
- MIMO与混合预编码技术
- 微波频段:采用传统MIMO空间复用技术。
- 毫米波频段:结合混合预编码算法(模拟+数字波束赋形)补偿高频路径损耗。
- 容量计算公式
四、实验结果与对比分析
- 容量对比
- 28GHz vs 3.5GHz:相同距离(30m)下,毫米波容量提升3-5倍,主要归因于可用带宽增加。
- SNR影响:毫米波在高SNR(>20dB)时容量增长更显著,但需优化波束对齐以维持稳定链路。
- 多径效应影响
CDL-A模型中簇延迟扩展导致频率选择性衰落,但通过OFDM子载波分配可有效抑制。
五、挑战与优化方向
- 覆盖增强:需结合Massive MIMO(如64天线阵列)提升波束增益,补偿毫米波传播损耗。
- 动态信道追踪:针对移动场景需优化波束管理算法,减少UE反馈开销。
- 混合仿真验证:建议结合思博伦Vertex等信道仿真器进行硬件在环测试,验证理论模型。
📚2 运行结果
部分代码:
%% Simulation Parameters
clear variables; % Clear the workspace.
%%% Parameters for channel modelling
Fc = 30e9; % Carrier frequency in Hz
WaveLength = physconst('LightSpeed')/Fc;
BS_height = 25; % BS antenna height (macro-cell scenario)
UE_height = 1.5; % UE antenna height (outdoor UEs)
Dis2D = 50:50:300; % Horizontal BS-UE distance in meters
Dis3D = sqrt((BS_height-UE_height)^2+Dis2D.^2); % Actual BS-UE distance
%%% Parameters for capacity calculation
BW = 0.005*Fc; % Bandwith in Hz
TX_power_mmWave = 35; % Transmit power in dBm, for mmWave frequencies
TX_power_Microwave = 49; % Transmit power in dBm, for microwave frequencies
Noise_power = -174; % dBm/Hz
Ns = 1; % Number of data streams
ITER = 1000; % Number of random channel realizations
%% Additional Channel Modelling Features
% Shadow fading
ShadowFadingFlag = 0; % 0 - not included, 1 - included
% Oxygen absorption
OxygenAbsorptionFlag = 0; % 0 - not included, 1 - included
%% CDL-A Channel Model
CDL_A = nrCDLChannel;
CDL_A.DelayProfile = 'CDL-A';
CDL_A.DelaySpread = 200*1e-9; % 200 ns
CDL_A.CarrierFrequency = Fc;
CDL_A.ChannelFiltering = false; % For extracting channel coefficients
CDL_A.TransmitAntennaArray.Size = [4 4 1 1 1]; % [M N P Mg Ng]
CDL_A.TransmitAntennaArray.PolarizationAngles = [0,0]; % Default: [45 -45], applies when P = 2
CDL_A.ReceiveAntennaArray.Size = [2 2 1 1 1]; % [M N P Mg Ng]
CDL_A.ReceiveAntennaArray.PolarizationAngles = [0,0]; % Default: [0 90], applies when P = 2
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]姬玲玲.MIMO信道建模仿真与容量研究[D].南京邮电大学,2012.
[2]向阳.可见光通信MIMO-OFDM关键技术研究[D].北京邮电大学,2015.
[3]何华,柯熙政,赵太飞.基于高度的紫外光NLOS单次散射链路模型的研究[J].激光技术, 2011, 35(4):4.
🌈4 Matlab代码、文档讲解下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取