💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于多目标灰狼优化算法的环境经济调度研究是指利用灰狼优化算法(Grey Wolf Optimization,GWO)解决环境经济调度问题,并将其扩展到多目标优化的情境下。在这个研究中,主要考虑的是环境保护和经济效益之间的平衡,以实现可持续发展的目标。
灰狼优化算法是一种模仿灰狼群体行为的智能优化算法,通过模拟灰狼的捕猎行为来寻找最优解。这种算法具有全局搜索能力和快速收敛性的优点,在解决复杂问题时表现出良好的效果。
环境经济调度问题通常涉及到资源利用、环境污染控制、生态保护等多个目标。利用多目标灰狼优化算法可以有效地处理这些目标之间的矛盾与协调关系,找到一组 Pareto 最优解,即在没有任何目标得到改善的情况下,无法再改善其他目标的解。
研究这一领域的目的是为了提供一种有效的方法,帮助决策者在环境经济调度中做出合理的决策,以实现经济效益和环境保护的双赢局面。通过灰狼优化算法的应用,可以更好地优化资源配置、减少环境污染、提高生态系统健康水平,从而促进可持续发展的实现。
动态环境经济调度(DEED)模型已广泛用于电力系统调度决策。但由于 DEED模型考虑调度周期内各时段动态负荷需求及各机组的爬坡率,使得DEED问题属一类含约束的高维非线性多目标优化问题,亟待设计高效优化算法求解之。传统优化方法,如动态规划﹑梯度法和 Lagrange松弛法等的搜索效果很大程度依赖于初始点,且需要将多目标 DEED模型转换为单目标模型,这往往不能为决策者提供诸多决策方案。然而﹐基于群体智能的随机搜索算法能很好地解决多目标优化问题”﹐并表现出优越的约束处理能力,且一次循环可获多个Pareto解,决策者可根据不同偏好选取所需的解﹐从而指导决策调度。因此,设计高效群体智能优化算法为DEED模型的求解及辅助调度人员进行合理决策具有重要的理论和实际意义。
Zhu 等人4提出改进的分解多目标进化算法( improved multiobjective evolutionary algorithm based on decom-position with constraints handling, IMOEA/D-CH),引入机组出力实时调整和约束违背惩罚的策略,并采用目标归一化避免算法偏向某一目标搜索,实验结果表明该算法能获得分布均匀的Pareto前沿(Pareto front, PF),但所获的PF延展性较差。李晨等人5将DEED问题按时段分解为多个子问题﹐然后对每个子问题独立优化,将各子问题的 Pareto解组合作为 DEED问题的Pareto 解,该方法降低了问题的求解难度﹐但所获的Pareto解往往具有局部性。Basu基于传统差分进化( diffe
erentialevolution, DE)提出改进的多目标差分进化算法(multiobjectivedifferential evolution,MODE),采用二次方程求根法处理功率平衡等式约束,实验结果表明MODE所获的PF延展性优于NSGA-II,但其收敛速度慢。
基于多目标灰狼优化算法的环境经济调度研究
一、引言
在当今社会,可持续发展已成为全球关注的焦点,环境经济调度问题在此背景下显得尤为重要。环境经济调度旨在平衡环境保护与经济效益,实现资源的合理利用以及生态系统的健康发展。多目标灰狼优化算法作为一种有效的智能优化算法,为解决这一复杂问题提供了新的途径和方法。本研究将深入探讨基于多目标灰狼优化算法的环境经济调度问题,以期为相关决策提供有力支持。
二、多目标灰狼优化算法概述
(一)灰狼优化算法原理
灰狼优化算法(Grey Wolf Optimization,GWO)是一种模仿灰狼群体行为的智能优化算法 。在灰狼群体中,存在着严格的等级制度,分别为α、β、δ和ω狼。α狼处于最高等级,负责领导决策;β狼辅助α狼,具有较高的地位;δ狼在群体中扮演着重要的信息传递角色;ω狼则是等级最低的成员。
(二)多目标灰狼优化算法扩展
多目标灰狼优化算法(Multi - Objective Grey Wolf Optimizer,MOGWO)是将灰狼优化算法扩展到多目标优化情境下的算法 。在多目标优化问题中,存在多个相互冲突的目标,无法找到一个绝对的最优解,而是需要找到一组 Pareto 最优解。
MOGWO 在处理多目标问题时,通过引入 Pareto 支配关系来比较解的优劣。若一个解 X1X1 在所有目标上都不劣于另一个解 X2X2,且至少在一个目标上优于 X2X2,则称 X1X1 Pareto 支配 X2X2。算法在迭代过程中,不断更新灰狼的位置,使得群体向 Pareto 最优前沿靠近,从而找到一组 Pareto 最优解。
三、环境经济调度问题分析
四、基于多目标灰狼优化算法的环境经济调度模型构建
(一)模型框架
将多目标灰狼优化算法应用于环境经济调度问题,构建的模型框架主要包括以下几个部分:
- 初始化种群:随机生成一定数量的灰狼个体,每个个体代表一个环境经济调度方案,其位置向量对应决策变量的值。
- 适应度计算:根据设定的目标函数,计算每个灰狼个体的适应度值,适应度值反映了该个体在多目标优化问题中的优劣程度。
- Pareto 排序与精英保留策略:对种群中的个体进行 Pareto 排序,将非支配解(Pareto 最优解)保留下来作为精英个体。精英保留策略有助于算法快速收敛到 Pareto 最优前沿。
- 位置更新:根据灰狼优化算法的位置更新公式,对种群中的个体进行位置更新,使其不断向 Pareto 最优解靠近。
- 终止条件判断:当满足设定的终止条件,如达到最大迭代次数或种群收敛时,算法停止运行,输出最终的 Pareto 最优解集。
(二)具体实现步骤
- 步骤 1:初始化参数 设置算法的参数,如种群规模 NN、最大迭代次数 TT、系数向量 A⃗A 和 C⃗C 的初始值等。同时,初始化灰狼种群,随机生成每个个体的位置向量。
- 步骤 2:适应度计算 对于每个灰狼个体,根据决策变量的值计算其在经济效益目标函数 f1f1 和环境效益目标函数 f2f2 下的适应度值。
- 步骤 3:Pareto 排序与精英保留 对种群中的所有个体进行 Pareto 排序,将非支配解放入精英集 EE 中。精英集 EE 中的个体将作为算法进化过程中的优良解进行保留和遗传。
- 步骤 4:位置更新 按照灰狼优化算法的位置更新公式,对种群中的个体进行位置更新。在更新过程中,利用精英集 EE 中的个体信息,引导种群向 Pareto 最优解方向进化。
- 步骤 5:终止条件判断 检查是否达到最大迭代次数 TT 或种群是否收敛。如果满足终止条件,则输出精英集 EE 中的 Pareto 最优解集;否则,返回步骤 2 继续迭代。
五、实验与结果分析
(一)实验设置
为了验证基于多目标灰狼优化算法的环境经济调度模型的有效性,进行如下实验设置:
- 测试系统:采用 IEEE30 节点系统作为测试平台,该系统包含多个发电机组和负荷节点,能够较好地模拟实际电力系统的运行情况 。
- 参数设置:种群规模 N=50N=50,最大迭代次数 T=200T=200,系数向量 A⃗A 和 C⃗C 的初始值根据算法要求进行设置。
- 对比算法:选择多目标粒子群算法(Multi - Objective Particle Swarm Optimization,MOPSO)作为对比算法,以评估多目标灰狼优化算法在环境经济调度问题上的性能优势。
(二)实验结果
- Pareto 最优解集:经过算法迭代,多目标灰狼优化算法得到了一组 Pareto 最优解集。这些解在经济效益和环境效益之间呈现出不同的权衡关系,为决策者提供了多种选择。
- 收敛性分析:通过对比多目标灰狼优化算法和多目标粒子群算法在迭代过程中的收敛情况,发现多目标灰狼优化算法具有更快的收敛速度,能够更快地逼近 Pareto 最优前沿。这表明多目标灰狼优化算法在处理环境经济调度问题时,能够更有效地搜索到最优解。
- 多样性分析:对两种算法得到的 Pareto 最优解集的多样性进行分析。结果显示,多目标灰狼优化算法得到的解集在 Pareto 最优前沿上分布更为均匀,具有更好的多样性。这意味着该算法能够找到更多不同类型的有效解,为决策者提供更丰富的决策方案。
(三)结果讨论
综合实验结果,多目标灰狼优化算法在解决环境经济调度问题上具有明显的优势。其快速的收敛性和良好的多样性使得算法能够在较短的时间内找到一组高质量的 Pareto 最优解,为实现经济效益和环境保护的双赢提供了有力支持。同时,与多目标粒子群算法相比,多目标灰狼优化算法在处理复杂的环境经济调度问题时表现更为出色,能够更好地平衡多个相互冲突的目标。
六、结论与展望
(一)研究结论
本研究将多目标灰狼优化算法应用于环境经济调度问题,通过构建相应的模型并进行实验验证,得出以下结论:
- 多目标灰狼优化算法能够有效地处理环境经济调度问题中的多个相互冲突的目标,找到一组 Pareto 最优解,为决策者提供了多样化的决策方案。
- 与多目标粒子群算法相比,多目标灰狼优化算法在收敛性和多样性方面表现更优,能够更快地逼近 Pareto 最优前沿,并在最优前沿上获得更均匀分布的解。
- 基于多目标灰狼优化算法的环境经济调度模型有助于实现资源的合理配置、减少环境污染、提高生态系统健康水平,从而促进可持续发展目标的实现。
(二)研究展望
- 算法改进:进一步研究多目标灰狼优化算法的改进策略,例如引入自适应参数调整机制、改进位置更新公式等,以提高算法在复杂环境经济调度问题中的性能。
- 考虑更多因素:在实际的环境经济调度中,还存在许多其他因素需要考虑,如可再生能源的间歇性和不确定性、电力市场的动态变化等。未来研究可以将这些因素纳入模型,使研究结果更具实际应用价值。
- 多领域应用拓展:多目标灰狼优化算法不仅可以应用于电力系统的环境经济调度,还可以拓展到其他能源系统或相关领域的多目标优化问题中,如工业生产过程中的节能减排优化、交通运输领域的能源消耗与排放控制等。通过跨领域的应用研究,进一步验证和推广该算法的有效性和实用性。
综上所述,基于多目标灰狼优化算法的环境经济调度研究具有重要的理论和实际意义,未来还有广阔的研究空间和发展前景。
📚2 运行结果
function MultiObj = GetProblemInfo(TestProblem) %1个多目标工程应用
switch TestProblem
case 1 % IEEE30Bus 环境经济负荷分配问题
numOfObj=3; %目标函数个数
nVar=6; %机组个数【dimension of problem】
VarMin=0.05*ones(1,nVar);
VarMax=1.5*ones(1,nVar);
name='IEEE 30-bus';
CostFunction = @Bus30;
end
%===结构体MultiObj参数=====
MultiObj.nVar=nVar;
MultiObj.var_min = VarMin;
MultiObj.var_max =VarMax;
MultiObj.fun=CostFunction;
MultiObj.numOfObj=numOfObj;
MultiObj.name=name;
end
%% 30节点数据及目标函数
function f=Bus30(x)
%=========发电机参数===============
%第1台机组参数
a(1,1) = 10; %ai
a(1,2) = 200; %bi
a(1,3) = 100; %ci
a(1,4) = 4.091; %aerfa
a(1,5)= -5.543; %beita
a(1,6)= 6.490; %gama
a(1,7) = 2.0 * 10.^(-4); %segama
a(1,8) = 2.857; %yita
%第2台机组参数
a(2,1) = 10;
a(2,2) = 150;
a(2,3) = 120;
a(2,4) = 2.543;
a(2,5)= -6.047;
a(2,6)= 5.638;
a(2,7) = 5.0 *10.^(-4);
a(2,8) = 3.333;
%第3台机组参数
a(3,1) = 20;
a(3,2) = 180;
a(3,3) = 40;
a(3,4) = 4.258;
a(3,5) = -5.094;
a(3,6) = 4.586;
a(3,7) = 1.0 * 10.^(-6);
a(3,8) = 8.000;
%第4台机组参数
a(4,1)= 10;
a(4,2) = 100;
a(4,3) = 60;
a(4,4)= 5.326;
a(4,5) = -3.550;
a(4,6) = 3.380;
a(4,7) = 2.0 * 10.^(-3);
a(4,8) = 2.000;
%第5台机组参数
a(5,1) = 20;
a(5,2) = 180;
a(5,3) = 40;
a(5,4) = 4.258;
a(5,5) = -5.094;
a(5,6) = 4.586;
a(5,7) = 1.0 * 10.^(-6);
a(5,8) = 8.000;
%第6台机组参数
a(6,1) = 10;
a(6,2) = 150;
a(6,3) = 100;
a(6,4) = 6.131;
a(6,5)= -5.555;
a(6,6) = 5.151;
a(6,7) = 1.0 * 10.^(-5);
a(6,8) = 6.667;
%第1台机组Bij参数
B(1,1) = 0.1382;
B(1,2) = -0.0299;
B(1,3) = 0.0044;
B(1,4) = -0.0022;
B(1,5) = -0.0010;
B(1,6) = -0.0008;
%第2台机组Bij参数
B(2,1) = -0.0299;
B(2,2) = 0.0487;
B(2,3) = -0.0025;
B(2,4) = 0.0004;
B(2,5) = 0.0016;
B(2,6) = 0.0041;
%第3台机组Bij参数
B(3,1) = 0.0044;
B(3,2)= -0.0025;
B(3,3) = 0.0182;
B(3,4) = -0.0070;
B(3,5) = -0.0066;
B(3,6) = -0.0066;
%第4台机组Bij参数
B(4,1) = -0.0022;
B(4,2) = 0.0004;
B(4,3) = -0.0070;
B(4,4) = 0.0137;
B(4,5) = 0.0050;
B(4,6) = 0.0033;
%第6台机组Bij参数
B(5,1) = -0.0010;
B(5,2) = 0.0016;
B(5,3) = -0.0066;
B(5,4) = 0.0050;
B(5,5) = 0.0109;
B(5,6) = 0.0005;
%第6台机组Bij参数
B(6,1) = -0.0008;
B(6,2) = 0.0041;
B(6,3) = -0.0066;
B(6,4) = 0.0033;
B(6,5) = 0.0005;
B(6,6) = 0.0244;
B0 = [-0.0107,0.0060,-0.0017,0.0009,0.0002,0.0030 ]; %线损参数B0
B00 = 9.8573 * 10.^(-4); %线损参数B00
f1 = 0.0;
f2 = 0.0;
f3 = 0.0;
%===============总燃料成本======================
for i=1:6
f1 =f1+ (a(i,1) + a(i,2) * x(i) + a(i,3) * x(i).^(2)); %sum(ai+bi*PGi+ci*PGi^2)【xi-PGi】
end
%===============总排放量========================
for i=1:6
f2 = f2 + 0.01 * (a(i,4) + a(i,5) *x(i) + a(i,6) * x(i).^(2)) + a(i,7) * 2.718281828.^(a(i,8) * x(i));
end
%===============总线损====================
for i=1:6
for j=1:6
f3 = f3 + x(i) * B(i,j) * x(j);
end
end
for i=1:6
f3 =f3 + B0(i) * x(i);
end
f3 =f3 + B00;
% %% 不等式约束
% for i=1:6
% if x(i)<PGmin(i)||x(i)>PGmax(i)
% x(i)=unifrnd(PGmin(i),PGmax(i))
% end
%% 等式约束
g = 0;
Pd = 2.834; %PD负荷量
for i=1:6
g =g+ x(i); %sum(PGi)
end
g = g - Pd - f3; %sum(PGi)-PD-PL
g=max(0,abs(g));
%% 目标函数+惩罚项
f(1)=f1+g;
f(2)=f2+0.1*g;
f(3)=f3+g;
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]姜飞.基于灰狼优化算法的多目标柔性作业车间动态调度研究[D].江苏大学[2024-04-17].
[2]杨凤惠.基于协同进化多目标优化算法的含风电场的电力系统经济调度研究[J].电力学报, 2015(4):7.DOI:CNKI:SUN:DILY.0.2015-04-015.
[3]朱永胜.电力系统环境经济优化调度研究[D].郑州大学,2016.
[4]张子泳,仉梦林,李莎.基于多目标粒子群算法的电力系统环境经济调度研究[J].电力系统保护与控制, 2017(10).DOI:10.7667/PSPC160752.