YOWO系列:在YOWOv2框架下使用AVA数据集

本文介绍了如何使用YOWO框架处理AV阿数据集,包括数据集的准备步骤,代码的相应修改,以及作者自行训练得到的效果,与官方结果相近但有微小提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOWO框架支持几种主流的数据集包括UCF101-24,AVA等,在之前的文章中已经介绍过UCF101-24复现过程及效果,这篇文章介绍个人复现AVA数据集的效果。

一、数据集准备

AVA数据集下载过程非常简单,但是准备过程十分繁琐,读者可以通过以下链接下载AVA数据集并着手开始准备。

https://github.com/yjh0410/AVA_Datasethttps://github.com/yjh0410/AVA_Dataset

下载完成之后,依次运行step1,step2,step3,step4的sh文件,Linux系统用户可以直接运行,Windows用户运行sh文件方法请见另一篇博客。

二、代码修改

如同另一篇博客(UCF101-24)修改代码的方法,我们需要在dataset/ava.py以及train.py文件内修改。

修改完成后,可以直接运行train.py或者通过终端命令行运行,终端命令如下:

python train.py --cuda -d ava_v2.2 --root path/to/dataset -v yowo_v2_nano --num_workers 4 --eval_epoch 1 --max_epoch 10 --lr_epoch 3 4 5 6 -lr 0.0001 -ldr 0.5 -bs 8 -accu 16 -K 16 --eval

训练过程比较慢,epoch=10,num_workers=4训练时间为4天半。

三、实验效果

下图为官方给出的AVA2.2数据集在YOWOv2框架的实验效果:

下图为我个人训练得到的效果:

效果接近,比官方的效果好了0.6个点。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值