再谈「相机标定」

全世界只有不到2%的人关注了视觉IMAX

你真是个特别的人

视觉IMAX的第32篇原创文章

640

前言

计算机视觉中,相机标定的重要性不言而喻,前面在公众号【视觉IMAX】中写过有多篇文章是关于相机标定的,包括,,但是,今天还想再次聊一聊相机标定,进一步加深对其基本方法与概念的理解。

一 基本问题

相机内外参数标定步骤主要包括如下:

  1. 考虑相机线性模型:

    640?wx_fmt=png

  2. 解算mij项;

  3. 分解内、外参数;

  4. 考虑非线性项。

Zhang方法:由张正友提出,OpenCV等广泛使用。在Zhang方法之前,一般都是使用立体靶标,对于立体靶标,很难计算其特征点的三维坐标。

Zhang方法特点:使用平面靶标摆多个pose(可未知)。

Zhang方法标定步骤: 

(1)对一个pose,计算单应性矩阵; 

(2)有三个以上pose,根据各单应矩阵计算线性相机参数; 

(3)使用非线性优化方法计算非线性参数。

二 Zhang方法

  • 第一步:求解单应矩阵——基本方程

    Zhang方法的特点:使用平面靶标摆多个pose。

    640?wx_fmt=png

由于特征点在平面上,我们此处令Z=0,则有上图中的表达式,也可看出:单应矩阵H为3x3的矩阵。

那么如何求解单应矩阵,建立内参数方程呢?

640?wx_fmt=png

注:由于Z=0,故而上图中r3一项没有,也即为0。

对应每一个pose,可得到上述两个方程。

  • 第二步:求解内参数——建立方程

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

注:具体的详细步骤,可参考《Learning OpenCV3》。

  • 第三步:求解外参数

640?wx_fmt=png

第四步(最后一步):非线性畸变参数求解

640?wx_fmt=png

注:Zhang方法呢,只考虑了径向畸变,对于OpenCV等工具包里,考虑了其他畸变。简单来说,计算畸变参数,主要是利用了重投影方法。

荐读

回复关键词——知识星球,扫码加入星球

640?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值