作者:萧熏儿 | 来源:3DCV
在公众号「3DCV」后台,回复「原论文」可获取论文pdf和链接
添加微信:dddvision,备注:slam,拉你入群。文末附行业细分群
1、导读
室内定位是一个具有挑战性的问题,因为在室内环境中,GPS信号通常无法到达,而传统的惯性导航系统在长时间使用后会出现漂移。为了解决这个问题,研究人员提出了一种基于磁场的惯性导航系统,利用磁场传感器和惯性测量单元(IMU)来实现室内定位。本文对这种系统进行了建模和算法设计,并通过实验评估了其性能。研究结果表明,基于磁场的惯性导航系统在室内定位中具有很大的潜力。
2、研究思路
我们的研究思路是开发一种基于磁场辅助的惯性导航系统,用于室内定位。研究问题主要是在室内环境中,由于缺乏GPS信号,传统的惯性导航系统无法提供准确的位置和方向估计。为了解决这个问题,本研究利用磁场传感器和惯性测量单元(IMU)的数据,提出了一种新的算法来实现磁场辅助的惯性导航系统。
3、方法
在这项研究中,作者提出了一个基于磁场辅助的惯性导航系统(INS)用于室内定位。系统由惯性测量单元(IMU)和30个磁强计组成。作者建立了一个状态空间模型来实现紧密集成的磁场辅助INS。惯性导航方程描述了位置和方向的估计,磁力计阵列的测量模型描述了磁场的测量。整个系统的动态和观测可以通过状态空间模型来描述。作者还介绍了一种基于误差状态的卡尔曼滤波器(ESKF)用于状态估计。该算法通过状态转移模型来传播估计状态,并使用补偿卡尔曼滤波器进行校正。
3.1、状态空间模型
状态空间模型是一种用于描述系统动态行为的数学模型。在这项研究中中,我们提出了一种基于磁场辅助惯性导航系统的状态空间模型。该模型的状态向量包括位置、速度和姿态等导航状态。通过使用惯性测量单元(IMU)和磁力计阵列的测量数据,可以对状态向量进行更新和估计。状态转移方程描述了状态向量的演化过程,其中包括惯性测量单元的动力学模型和磁场模型的更新。观测方程描述了测量数据与状态向量之间的关系。具体而言,状态转移方程可以表示为:

观测方程可以表示为:

状态空间模型还包括过程噪声和测量噪声的协方差矩阵和,用于描述噪声的统计特性。

通过使用状态空间模型,可以利用IMU和磁力计阵列的测量数据对导航状态进行估计和更新,从而实现室内定位。
3.3、惯性导航方程
惯性导航方程是用来估计传感器平台的位置和方向的,方程可以表示为:

3.3、磁力计阵列测量模型
磁力计阵列测量模型描述了在时间k时刻第i个传感器测量到的磁场值。根据文中的描述,该模型可以表示为:

其中,是第个传感器在时间k时刻测量到的磁场值,是第i个磁力计在阵列中的位置,是当前时刻的磁场模型参数,是测量误差,包括测量噪声和磁场模型的不完美性。误差被假设为白噪声,并且服从高斯分布,其协方差矩阵为。
3.4、ESKF
基于误差状态的卡尔曼滤波器(ESKF)是一种用于状态估计的滤波算法。它通过将状态向量分解为估计状态和误差状态,并使用误差状态的动态模型来纠正估计状态,从而提高状态估计的精度。ESKF的算法流程如下:

4、实验结果
本研究采用了实验方法来评估提出的方法的性能。实验中使用了一个由30个磁强计和一个惯性测量单元(IMU)组成的传感器平台。实验过程如下:
实验设置:首先,将磁强计阵列静置在地面上几秒钟,然后由一个人拿起并握在手中,围绕一个正方形路径行走几圈,最后将传感器平台放回地面。通过基于摄像头的运动跟踪系统测量了传感器平台的真实轨迹。总共记录了8个数据集,每个数据集的主要特征在表格中进行了总结。
算法比较:将这些数据集分别用三种算法进行处理:独立的惯性导航系统(INS)、提出的MAIN算法和文献中提出的方法。首先,将运动跟踪系统测量的位置信息提供给所有算法进行60秒的校准,以校正IMU的偏差并稳定状态估计。然后,所有系统在剩余的轨迹上都不使用位置辅助进行操作。通过绘制三种算法估计的轨迹和相应的位置误差,对它们进行比较和评估。
结果分析:从实验结果可以看出,MAIN算法和文献中的方法在水平误差、垂直误差和速度误差方面都表现出优越的性能,相比之下,独立的惯性导航系统(INS)的位置误差增长速度更快。MAIN算法在所有数据集上的速度误差普遍较低,并且平均水平误差也较低。因此,MAIN算法在室内定位中具有较好的性能。




5、总结
我们提出了一种基于磁场辅助的惯性导航系统(MAINS)用于室内定位。该系统利用惯性测量单元(IMU)和磁力计阵列来估计传感器平台的位置和方向。研究表明,通过将磁场信息与惯性测量相结合,可以显著提高室内定位的准确性和稳定性。
3D视觉交流群
大家好,群里会第一时间发布3D计算机视觉方向的最前沿论文解读和交流分享,主要方向有:
视觉SLAM
、激光SLAM
、ORB-SLAM
、Vins-Fusion
、LOAM/LeGo-LOAM
、cartographer
、VIO
、语义SLAM、滤波算法、多传感器融合、多传感器标定、MSCKF
、动态SLAM
、MOT
SLAM
、NeRF-SLAM
、FAST-LIO
、LVI-SAM
、LIO-SAM
、事件相机、GPS
/RTK
/UWB
/IMU
/码盘/TOF
(iToF
、dToF
)、激光雷达、气压计、毫米波雷达、RGB-D相机、超声波等、机器人导航、相机标定、立体匹配、三维点云、结构光(面/线/散斑)、机械臂抓取(2D/3D)、2D缺陷检测、3D缺陷检测、6D位姿估计、相位偏折术、Halcon
、光场重建、摄影测量、阵列相机、偏振三维测量、光度立体视觉、激光雷达、NeRF
、多视图几何、OpenMVS
、MVSNet
、colmap
、纹理贴图、深度估计、Transformer
、毫米波/激光雷达/视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、目标检测、3D目标检测、路径规划、轨迹预测、3D点云、3D点云分割、模型部署、车道线检测、Occupancy
、目标跟踪、四旋翼建模、无人机飞控、求职、硬件选型、视觉产品落地、最新论文、3D视觉最新产品等综合交流群。
添加微信: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 小助理会拉你入群。

3D视觉学习圈子
我们的3D视觉学习圈子「3D视觉从入门到精通」知识星球、6000+成员交流学习。星球依托于微信公众号「3D视觉工坊」、「计算机视觉工坊」、「3DCV」,包括:独家秘制课程;项目对接;3D视觉学习路线总结;最新顶会论文&代码;3D视觉行业最新模组;3D视觉源码汇总;书籍推荐;编程基础&学习工具;实战项目&作业;求职招聘&面经&面试题等等。想了解3D视觉或者入行3D视觉方向欢迎您扫码加入我们的学习圈子知识星球。

3D视觉学习平台
我们的3D视觉学习平台包含:面结构光高阶项目实战、机器人规划控制、MVSNet三维重建、四旋翼无人机、论文方法论、Linux
、dTOF
、面结构光三维重建、线结构光三维重建、三维视觉C++、车载标定、机器人3D激光SLAM、LOAM-SLAM
、IMU-GPS-SLAM
、VINS-SLAM
、室内室外激光SLAM、Transformer
、Transformer
、相机标定、ROS2
、点云、open3d
、3D缺陷检测、机械臂抓取、单目深度估计、3D目标检测、colmap三维重建等等。
