CVPR 2025 | 多视角视觉目标跟踪新突破!MITracker:高效融合多视角特征,解决遮挡与目标丢失问题!...

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

来源:CVer

添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。

扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

f3fecddc37507d6ab2956c85ea2540ee.jpeg

eea1ea304c7f5636559ce91ea1ea7220.png

Title: MITracker: Multi-View Integration for Visual Object Tracking

论文: https://arxiv.org/abs/2502.20111

主页: mii-laboratory.github.io/MITracker/

8415e160d0f179cc8c1206ba80179f14.png

动机:

视觉目标跟踪是计算机视觉领域的核心任务之一,广泛应用于增强现实、自动驾驶等场景。然而,传统的单视角跟踪方法在面对遮挡、目标丢失等挑战时表现不佳。尽管多视角跟踪(MVOT)通过多视角信息的互补性提供了潜在的解决方案,但该领域的发展受到以下限制:

  1. 数据集限制:现有的多视角数据集大多局限于特定类别(如行人或鸟类),缺乏通用性。

  2. 方法限制:现有的多视角跟踪方法主要依赖于检测和重识别技术,难以实现类无关的目标跟踪。

  3. 跨视角信息融合不足:现有的方法在跨视角信息融合方面效果有限,难以应对复杂的空间关系和视角变化。

为了解决这些问题,我们提出了一个新的多视角跟踪数据集 MVTrack 和一个高效的多视角跟踪方法 MITracker,旨在通过多视角信息的融合提升跟踪的鲁棒性和准确性。

本文贡献:

  1. MVTrack数据集:我们构建了一个大规模的多视角跟踪数据集,包含234K高质量标注帧,涵盖27个不同类别的物体和9种具有挑战性的跟踪属性(如遮挡、变形等)。MVTrack是首个支持类无关多视角跟踪训练和评估的综合性数据集。

  2. MITracker方法:我们提出了一种新颖的多视角跟踪方法MITracker,通过将2D图像特征转换为3D特征体积,并利用鸟瞰图(BEV)引导的多视角信息融合机制,显著提升了跟踪的稳定性和准确性。

  3. 性能提升:MITracker在MVTrack和GMTD数据集上均达到了最先进的性能,特别是在遮挡和目标丢失等复杂场景下,恢复率从56.7%提升至79.2%。

MVTrack数据集特性:

  • 多视角数据:3-4个同步相机拍摄,确保多视角重叠。

  • 丰富类别:涵盖27个日常物体,从小型物体(如笔)到大型物体(如雨伞)。

  • 高质量标注:每帧提供精确的2D边界框(BBox)和鸟瞰图(BEV)标注。

  • 挑战性属性:包含9种常见的跟踪挑战,如背景杂乱、运动模糊、部分遮挡、完全遮挡、目标消失等。

  • 大规模数据:包含260个视频,总计234,430帧,分为训练集、验证集和测试集。

ba94134a775972fee41d4838f7271dbd.png

MITracker方法亮点:

  1. 多视角特征融合:通过将多视角的2D特征投影到3D空间,并利用BEV引导的特征聚合,显著增强了模型的空间理解能力。

  2. 空间增强注意力机制:通过引入3D感知的注意力机制,MITracker能够在目标丢失或遮挡的情况下快速恢复跟踪。

  3. 高效跟踪:MITracker能够在任意长度的视频帧中跟踪任意物体,并在多视角场景下保持稳定的跟踪效果。

c8108dd73674778f383b10df4b2a9ea3.png

实验与结果:

我们在MVTrack和GMTD数据集上进行了广泛的实验,MITracker在多个评估指标上均达到了最先进的性能。特别是在多视角场景下,MITracker的表现显著优于现有的单视角跟踪方法,展示了其在复杂场景下的强大鲁棒性。

322f55b6bd6f32c4d3eb781206195020.png

未来工作:

我们计划进一步扩展MVTrack数据集,增加室外场景和更多类别的物体,以提升模型的泛化能力。同时,我们也将探索减少对相机校准的依赖,使MITracker在更多实际场景中应用。

总结:

MITracker通过多视角信息的有效融合,解决了传统单视角跟踪中的遮挡和目标丢失问题,为多视角视觉目标跟踪领域提供了新的解决方案。我们相信,MVTrack数据集和MITracker方法将为未来的研究提供强有力的支持,推动视觉目标跟踪技术的进一步发展。

本文仅做学术分享,如有侵权,请联系删文。

44aae176860136da7c4bbadc8e5c6b20.jpeg

9d438fe6bb1c6afccaf7039ddab68706.jpeg

3D视觉交流群,成立啦!

目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等

最前沿:具身智能、大模型、Mamba、扩散模型、图像/视频生成等

除了这些,还有求职硬件选型视觉产品落地、产品、行业新闻等交流群

添加小助理: cv3d001,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

289adf012e6d4baa22256796b853d0f8.jpeg
▲长按扫码添加助理:cv3d001
3D视觉工坊知识星球

「3D视觉从入门到精通」知识星球(点开有惊喜),已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

4ec066f35674cec7f4da90fcddb107b6.jpeg

▲长按扫码加入星球
3D视觉工坊官网:www.3dcver.com

卡尔曼滤波、大模型、扩散模型、具身智能、3DGS、NeRF结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真C++、三维视觉python、dToF、相机标定、ROS2机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

5967c334bdb744393c92a69100cc697b.jpeg
▲ 长按扫码学习3D视觉精品课程

3D视觉模组选型:www.3dcver.com

964715b8e2c664a6db6559f57e159508.png

—  —

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

3D视觉科技前沿进展日日相见 ~ 

outside_default.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值