高斯随机变量

高斯随机变量

标量实高斯随机变量

标准高斯随机变量 ω \omega ω

实数域上的标准高斯变量 ω \omega ω的概率密度函数:
f ( ω ) = 1 2 π e x p ( − ω 2 2 ) , ω ∈ R f(\omega)=\frac{1}{\sqrt{2\pi}}exp(-\frac{\omega_2}{2}),\quad \omega\in \mathfrak{R} f(ω)=2π 1exp(2ω2),ωR

  • 均值: 0 0 0
  • 方差: 1 1 1

(一般的)高斯随机变量 x x x

x = σ ω + μ x=\sigma\omega+\mu x=σω+μ

  • 均值: μ \mu μ
  • 方差: σ \sigma σ

x x x对应的概率密度函数:
f ( x ) = 1 2 π σ 2 e x p ( − ( x − μ ) 2 2 σ 2 ) , x ∈ R f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}exp(-\frac{(x-\mu)^2}{2\sigma^2}),\quad x\in \mathfrak{R} f(x)=2πσ2 1exp(2σ2(xμ)2),xR

随机变量的符号表示

由于随机变量完全由均值方差所特征化,因此可以由以下形式表示
ω ∼ N ( 0 , 1 ) x ∼ N ( μ , σ ) \omega \sim \mathcal{N}(0, 1)\\ x \sim \mathcal{N}(\mu, \sigma) ωN(0,1)xN(μ,σ)

高斯随机变量的尾部

Q ( a ) = P ( ω > a ) Q(a)=\mathbb{P}(\omega>a) Q(a)=P(ω>a)

特点:指数级衰落

高斯性的属性

通过线性变换保持不变
Σ i = 1 ∞ c i x i ∼ N ( Σ i = 1 ∞ c i μ i , Σ i = 1 ∞ c i 2 μ i 2 ) \Sigma_{i=1}^\infty c_i x_i\sim \mathcal{N}(\Sigma_{i=1}^\infty c_i\mu_i, \Sigma_{i=1}^\infty c_i^2\mu_i^2) Σi=1cixiN(Σi=1ciμi,Σi=1ci2μi2)

实高斯随机矢量

正交矩阵

定义

若实矩阵 A A A满足 A A T = A T A = I AA^T=A^TA=I AAT=ATA=I,则称 A A A为正交矩阵

性质
  • A − 1 = A T A^{-1}=A^T A1=AT

  • ∣ A ∣ = ± 1 |A|=\pm1 A=±1

  • 正交矩阵的乘积也是正交矩阵

    A T A = A A T = I , B B T = B T B = I A^TA=AA^T=I,BB^T=B^TB=I ATA=AAT=I,BBT=BTB=I,则

    ( A B ) T ( A B ) = B T ( A T A ) B = B T B = I (AB)^T(AB)=B^T(A^TA)B=B^TB=I (AB)T(AB)=BT(ATA)B=BTB=I

  • A A A为正交矩阵 ⇔ A \Leftrightarrow A A​的行(列)向量组都是规范正交向量组
    设 A = ( x 1 x 2 . . . x n ) , A T = ( x 1 T , x 2 T , . . . , x n T ) , 则 A A T = ( x 1 x 1 T x 1 x 2 T . . x 1 x n T x 2 x 1 T x 2 x 2 T . . x 2 x n T . . . . . . . . . . x n x 1 T x n x 2 T . . x n x n T ) = I ⇔ a i a i T = 1 , a i a j T = 0 ( i ≠ j ) ⇔ ( a i , a i ) = 1 , ( a i , a j ) = 0 ( i ≠ j ) 设A=\left(\begin{array}{c}x_1 \\ x_2 \\ . \\ . \\ . \\ x_n \\ \end{array}\right),A^T=(x_1^T, x_2^T, ..., x_n^T),则\\AA^T=\left(\begin{array}{ccccc}x_1x_1^T & x_1x_2^T & . & . & x_1x_n^T \\ x_2x_1^T & x_2x_2^T & . & . & x_2x_n^T \\ . & . & . & . & . \\ . & . & . & . & . \\ x_nx_1^T & x_nx_2^T & . & . & x_nx_n^T \end{array}\right)=I\\ \Leftrightarrow a_ia_i^T=1,a_ia_j^T=0(i\neq j)\\ \Leftrightarrow (a_i, a_i)=1,(a_i, a_j)=0(i\neq j) A= x1x2...xn ,AT=(x1T,x2T,...,xnT),AAT= x1x1Tx2x1T..xnx1Tx1x2Tx2x2T..xnx2T..........x1xnTx2xnT..xnxnT =IaiaiT=1,aiajT=0(i=j)(ai,ai)=1,(ai,aj)=0(i=j)

  • 正交矩阵保持向量长度不变

    α \alpha α n n n维列向量, A A A n n n阶正交矩阵,证明 ∥ A α ∥ = ∥ α ∥ \parallel A \alpha \parallel=\parallel \alpha \parallel Aα∥=∥α
    KaTeX parse error: No such environment: eqnarray at position 68: …_t)^T \\ \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ A\alpha & = &(…

标准高斯随机矢量

标准高斯随机矢量 ω \omega ω是由 n n n个独立同分布的标准高斯随机变量 ω 1 , ω 2 , . . . , ω n \omega_1, \omega_2,...,\omega_n ω1,ω2,...,ωn组成,矢量 ω = ( ω 1 , ω 2 , . . . , ω n ) \omega=(\omega_1, \omega_2, ..., \omega_n) ω=(ω1,ω2,...,ωn)的概率密度函数
f ( ω ) = 1 ( 2 π ) n e x p ( − ∥ ω ∥ 2 ) , ω ∈ R n f(\omega)=\frac{1}{(\sqrt{2\pi})^n}exp(-\frac{\parallel \omega \parallel}{2}),\quad \omega \in \mathfrak{R^n} f(ω)=(2π )n1exp(2ω),ωRn

重要结论

对于正交矩阵 A A A来说,如果 ω \omega ω服从标准高斯分布,则 A ω A\omega Aω​也服从标准高斯分布

原因:

  • 从代数角度

    • 乘法不会改变随机变量的均值

    • 密度函数仅仅与自变量的模有关,而正交矩阵不会改变向量的二阶范数(方差)

  • 从几何角度

    • 正交变换不会改变原图形的几何形状,能够保持原图形的空间不变性
    • 只是对原图形进行旋转操作

标准高斯随机矢量在正交方向上的投影相互独立

原因:

v 1 = ( a 1 , a 2 , . . . , a n ) T , v 2 = ( b 1 , b 2 , . . . , b n ) T v_1=(a_1, a_2, ..., a_n)^T, v_2=(b_1, b_2, ..., b_n)^T v1=(a1,a2,...,an)T,v2=(b1,b2,...,bn)T为两个正交方向( n × 1 n\times 1 n×1), ω = ( ω 1 , ω 2 , . . . , ω n ) T \omega=(\omega_1, \omega_2, ..., \omega_n)^T ω=(ω1,ω2,...,ωn)T为标准高斯随机矢量( n × 1 n\times1 n×1), ω \omega ω在两个方向上的投影(标量)分别是 X 1 = v 1 ⋅ ω = v 1 T ω = Σ a i ω i , X 2 = v 2 ⋅ ω = v 2 T ω = Σ b i ω i X_1=v_1 \cdot \omega=v_1^T\omega=\Sigma a_i \omega_i,\\ X_2=v_2 \cdot \omega=v_2^T\omega=\Sigma b_i \omega_i X1=v1ω=v1Tω=Σaiωi,X2=v2ω=v2Tω=Σbiωi,
又知两个随机变量相互独立的充要条件是协方差为0
C o v ( X 1 , X 2 ) = E [ ( X 1 − E [ X 1 ] ) ( X 2 − E [ X 2 ] ) T ] Cov(X_1, X_2)=E[(X_1-E[X_1])(X_2-E[X_2])^T] Cov(X1,X2)=E[(X1E[X1])(X2E[X2])T]
又知道对于上述 X 1 X 2 X_1X_2 X1X2都是标量,期望为0,
故有:
KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ Cov(X_1, X_2) …

∥ ω ∥ 2 \parallel \omega \parallel ^ 2 ω2的分布

∥ ω ∥ 2 \parallel \omega \parallel ^ 2 ω2等于 n n n个独立同分布的零均值高斯随机变量的平方和,为自由度为 n n n χ n 2 \chi_n^2 χn2分布

  • 推导

高斯随机矢量

定义

高斯随机矢量是标准高斯随机矢量的线性变换再加上一个常矢量
x = A ω + μ x=A\omega+\mu x=Aω+μ

协方差矩阵(方差)
协方差矩阵的推导

KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ K=Cov(x, x) & …

协方差矩阵的意义

对于 x = ( x 1 , x 2 , . . . , x n ) T x=(x_1, x_2, ..., x_n)^T x=(x1,x2,...,xn)T这样的随机变量
KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ K & = &Cov(x, …

性质
  • 均值 μ \mu μ,方差 A A T AA^T AAT

  • 标准高斯随机矢量服从均值为KaTeX parse error: Undefined control sequence: \matrix at position 1: \̲m̲a̲t̲r̲i̲x̲{0},方差为 I I I的高斯随机矢量

  • 对于任意的 c , x ∈ R n c, x\in \mathfrak{R^n} c,xRn,都有 c T x ∼ N ( c T μ , c t A A T c ) c^Tx \sim \mathcal{N}(c_T\mu, c^tAA^Tc) cTxN(cTμ,ctAATc)

    理解: c T x c_Tx cTx c c c x x x的内积,是一个标量,线性组合的结果是一个标量, c t μ c_t\mu ctμ c t A A T c c^tAA^Tc ctAATc均为标量

  • 如果 A A A可逆矩阵,概率密度函数为
    f ( x ) = 1 2 π n d e t ( A A T ) e x p ( − 1 2 ( x − μ ) T ( A A T ) − 1 ( x − μ ) ) f(x)=\frac{1}{\sqrt{2\pi}^n\sqrt{det(AA^T)}}exp(-\frac{1}{2}(x-\mu)^T(AA^T)^{-1}(x-\mu)) f(x)=2π ndet(AAT) 1exp(21(xμ)T(AAT)1(xμ))

推论
  • 可以只用协方差矩阵 A A T AA^T AAT表征 x x x的密度

  • 设正交矩阵 O O O,$x_1=A\omega + \mu 与 与 x_2=AO\omega + \mu$ 分布相同
    KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ K_1=Cov(x_1, x…

  • 协方差矩阵为对角矩阵时,高斯随机矢量由独立的高斯随机变量组成

  • 协方差矩阵是单位阵的时候,高斯随机矢量由标准高斯随机变量组成

复高斯随机矢量

共轭转置

设有矩阵 G G G,其共轭转置矩阵可以表示为 G H G^H GH

他是在转置的基础上,对每个元素取复共轭

形式

复高斯随机矢量 x x x的形式如下面的公式所示
x = x R + j x I x=x_R+jx_I x=xR+jxI
其中 x R x_R xR x I x_I xI都是实矢量

复高斯随机矢量是指满足 [ x R , x I ] T [x_R, x_I]^T [xR,xI]T为实高斯随机矢量的矢量,分布由均值和协方差矩阵确定

重要参数

KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ \mu: & = &E[x]…

注意:复随机矢量 x x x的协方差矩阵 K K K本身通常不足以确定 x x x的全部二次统计量

K K K可以由 n 2 n^2 n2个实参数确定,而全部二阶统计量需要用 n ( 2 n + 1 ) n(2n+1) n(2n+1)​个实参数确定

复高斯随机矢量通常由五个参数确定:实部与虚部的均值和方差,实部与虚部的相关性

循环对称性

对于任意 θ \theta θ,如果 e j θ x e^{j\theta}x ejθx x x x​具有相同的分布,则x为循环对称

理解: e j θ e^{j\theta} ejθ是一个旋转因子,如果对于任意的旋转角度分布相同,当然具有循环对称性

循环对称复高斯随机矢量

性质

对于任意 θ \theta θ,循环对称复高斯随机矢量 x x x,都有:

μ = E ( x ) = E ( e j θ x ) = e j θ E ( x ) \mu=E(x)=E(e^{j\theta}x)=e^{j\theta}E(x) μ=E(x)=E(ejθx)=ejθE(x)

J = E [ ( x − μ ) ( x − μ ) T ] = E ( x x T ) = E ( e j θ x ( e j θ x ) T ) = e j 2 θ E ( x x T ) J=E[(x-\mu)(x-\mu)^T]=E(xx^T)=E(e^{j\theta}x(e^{j\theta}x)^T)=e^{j2\theta}E(xx^T) J=E[(xμ)(xμ)T]=E(xxT)=E(ejθx(ejθx)T)=ej2θE(xxT)

  • 均值 μ \mu μ 0 0 0

    反证法:

    假设均值 μ \mu μ不是0,若满足 E ( x ) = e j θ E ( x ) E(x)=e^{j\theta}E(x) E(x)=ejθE(x),则对于任意的旋转角度 θ \theta θ,都要有 e j θ − 1 e^{j\theta -1} ejθ1为0,矛盾

  • 伪协方差矩阵 J J J 0 0 0

    证明同上

  • 协方差矩阵 K K K​完全确定循环对称矢量的一阶和二阶统计量

表示

C N ( 0 , K ) \mathcal{CN}(0, K) CN(0,K)

特殊情况
  • 实部和虚部为独立同分布的零均值高斯随机变量时,复高斯随机变量循环对称

  • 由n个相互独立的服从同一分布 C N ( 0 , 1 ) \mathcal{CN}(0, 1) CN(0,1)的随机变量构成的标准循环对称随机矢量可以表示为 C N ( 0 , I ) \mathcal{CN}(0, I) CN(0,I)

  • 如果 ω \omega ω C N ( 0 , I ) \mathcal{CN}(0, I) CN(0,I), A A A为复矩阵,则 x = A ω x=A\omega x=Aω也是协方差矩阵 K = A A H K=AA^H K=AAH的循环对称高斯矢量,即服从 C N ( 0 , K ) \mathcal{CN}(0, K) CN(0,K)

高斯随机变量是一种常见的概率分布,也被称为正态分布。在Matlab中,可以使用randn函数生成高斯随机变量。该函数生成服从均值为0,方差为1的标准正态分布的随机数。如果需要生成具有不同均值和方差的高斯随机变量,可以使用以下公式进行变换: X = mean + std * randn 其中,mean是均值,std是标准差。通过调整mean和std的值,可以生成具有不同均值和方差的高斯随机变量。 以下是一个示例代码,用于生成均值为mu,方差为sigma的高斯随机变量: ```matlab mu = 0; % 均值 sigma = 1; % 方差 n = 10000; % 生成的随机数个数 X = mu + sigma * randn(n, 1); % 生成高斯随机变量 % 将生成的随机数保存到文件中 fileID = fopen('gaussian_random_numbers.txt', 'w'); fprintf(fileID, '%f\n', X); fclose(fileID); ``` 这段代码将生成10000个均值为0,方差为1的高斯随机变量,并将结果保存到名为"gaussian_random_numbers.txt"的文件中。你可以根据需要修改均值和方差的值,并指定不同的文件名来保存结果。 #### 引用[.reference_title] - *1* *3* [随机变量生成算法——通过Rayleigh变量(或均匀分布变量)转换为高斯随机变量](https://blog.csdn.net/swilliamss/article/details/108912530)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [MATLAB之常见随机变量分布的PDF和CDP](https://blog.csdn.net/wanjiac/article/details/110161754)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值