基本概念
什么是凸优化
【百度百科定义】凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。
凸优化这个概念实际在研究中经常会遇到。包括在机器学习、控制领域等等。最小二乘其实就是一种通过凸优化来实现的问题。
什么是凸函数

凸表明的是下凸,也就是上凹,直观地讲,函数形为

即为凸函数。
什么是凸集
【百度百科】令S是实数上的线性空间,或者更一般地,是在某个有序域上,这包括欧几里德空间。如果对于C中的所有x和y,并且在区间(0,1)中的所有t,点 也属于C,则S中的集合C被称为凸。换句话说,连接x和y的线段上的每个点都在C中。这意味着实际或复杂拓扑线性空间中的凸集是道路连通的。
更易理解的说法:
设S为n维欧式空间 R n \mathbb{R} ^{n} R

凸优化是数学最优化的一个分支,关注在凸集上求解凸函数的最小化问题。文章介绍了凸优化的基本概念,包括凸函数(其图形特征是下凸)和凸集(连接任意两点的线段都在集合内)。最小二乘作为凸优化的应用实例,是无约束优化问题,常用于减少测量误差。文章还探讨了全局最优化与局部最优化的区别,全局最优化确保找到问题的最佳解决方案,而不仅仅是局部最优解。
最低0.47元/天 解锁文章
2014

被折叠的 条评论
为什么被折叠?



