工作内容
论文
今天终于基本结束了论文《Adaptive Kalman filter for actuator fault diagnosis》(用于执行器故障诊断的自适应卡尔曼滤波器)的主要章节,针对看这篇文献的动机,即另一篇参考文本的文章中的参数估计的表达式具体是为何这样来计算的问题,有了一个混沌的认知。
参数估计主要是应用了递推最小二乘法,但在本文中也是直接给出了一个表达式,这个表达式参考的是99年的一本经典的教材,与之前学习的递推最小二乘法的表达式有较大出入。
明天重新捋一下这篇文献,看看有没有新收获。
引申
估计的稳定性是通过上下界来表征的;
估计的有效性是通过估计误差在k->无穷 的时候,估计误差->0来表征的。
心得
协方差矩阵一定是对称阵


引用自知乎《如何直观地理解「协方差矩阵」》
未解决的问题
1.Kalman标准公式中,估计误差协方差P是对称、正定的。教材中也有提到,

本文档主要探讨了一篇关于执行器故障诊断的自适应卡尔曼滤波器的论文,作者在阅读过程中对参数估计的递推最小二乘法表达式产生了疑问。文中指出,协方差矩阵必须是对称阵,而某些计算形式可能无法保证这一性质,这可能影响估计的稳定性和有效性。此外,文章提到了文献中常见的一种算法先呈现、后续证明的写作方式,这种方式对初学者来说阅读难度较高。最后,作者对递推最小二乘法的不同形式表达了好奇,尤其是与已知形式的差异。
最低0.47元/天 解锁文章
895

被折叠的 条评论
为什么被折叠?



