2024深度学习发论文&模型涨点之——小波变换+Transformer
小波变换与Transformer的结合主要探讨如何利用小波变换的多尺度特性来增强Transformer在处理信号和图像数据时的表现。具体来说,小波变换能够有效提取信号中的局部特征,并在时间和频率域上提供信息,这对于处理复杂的信号(如图像和音频)非常有用。结合小波变换的Transformer可以在保持相对较低的参数数量的同时,显著扩展感受野。这种参数效率使得模型在处理大规模数据时更加高效,减少了计算成本。提供更好的效率与准确率的平衡。
论文原文+开源代码需要的同学关注“
AI科研论文”公号,那边回复“
小波变换+Transformer”获取。
论文1:
Adaptive Wavelet Transformer Network for 3D Shape Representation Learning
用于3D形状表示学习的自适应小波变换器网络
方法
多尺度小波分解:提出了一种新颖的3D形状表示学习方法,通过多尺度小波分解将3D形状分解为子带分量,构建了一个基于多分辨率小波分析的原理性的层次分解树。
自适应小波变换器网络(AWT-Net):首先使用提升方案在多个尺度上递归和层次地生成每个点的近似或细节小波系数,然后利用Transformer增强原始形状特征,通过查询和融合不同但集