小波变换是一种新的变换分析方法,它能有效提取信号的局部特征,但无法完全捕捉数据重要部分。为了解决这个问题,我们引入注意力机制,利用其强化关注重点的优势,将两者结合,做到更全面、深入地挖掘数据特征,以此来提升模型性能和对复杂数据的处理能力。
这种结合不仅是技术上的创新,在实际应用中也给我们提供了新的解决思路和方法,效果也十分能打,比如一种新颖的滚动轴承故障分类方法,将一维改进的自注意增强卷积神经网络与经验小波变换相结合,实现了100%的分类准确率。
因此这种结合在学术界与工业界都很热门,在对绝大部分去噪、检测等任务中效果都特别好,创新空间很大。为帮助想发论文的同学,我挑选了11篇最新的小波变换+注意力机制结合创新方案,代码基本都开源了,方便大家复现找灵感。
论文原文+开源代码需要的同学看文末
An Intelligent Bearing Fault Diagnosis Framework: One Dimensional Improved Self Attention-enhanced CNN and Empirical Wavelet Transform
方法:本文提出了一种新颖的一维改进自注意增强卷积神经网络(1D-ISACNN),并采用经验小波变换(EWT)用于滚动轴承故障分类。该方法在三组不同的轴承数据上进行了测试,实现了100%的分类准确率。