基于Transformer的双向编码(BERT)新闻和谣言分析系统研究与实现

本研究提出了一种基于Transformer的双向编码(BERT)模型的新闻/谣言分析系统。通过Python实现,并使用预训练的BERT模型进行训练和优化,系统能够准确地对新闻和谣言进行分类和分析。

详细介绍了数据预处理、模型训练与测试、以及结果分析的全过程。实验结果表明,该系统在处理新闻和谣言的识别任务中具有较高的准确性和稳定性,为信息真实性的自动化检测提供了有效的技术支持。

算法流程

运行效果

– 运行gui.py

– 运行bert_test.py

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值