本研究提出了一种基于Transformer的双向编码(BERT)模型的新闻/谣言分析系统。通过Python实现,并使用预训练的BERT模型进行训练和优化,系统能够准确地对新闻和谣言进行分类和分析。
详细介绍了数据预处理、模型训练与测试、以及结果分析的全过程。实验结果表明,该系统在处理新闻和谣言的识别任务中具有较高的准确性和稳定性,为信息真实性的自动化检测提供了有效的技术支持。
算法流程
运行效果
– 运行gui.py
– 运行bert_test.py
本研究提出了一种基于Transformer的双向编码(BERT)模型的新闻/谣言分析系统。通过Python实现,并使用预训练的BERT模型进行训练和优化,系统能够准确地对新闻和谣言进行分类和分析。
详细介绍了数据预处理、模型训练与测试、以及结果分析的全过程。实验结果表明,该系统在处理新闻和谣言的识别任务中具有较高的准确性和稳定性,为信息真实性的自动化检测提供了有效的技术支持。
– 运行gui.py
– 运行bert_test.py