遥感影像识别进展2022/3/17

该博客探讨了在图像识别任务中,如何通过截取原始工区的一部分并利用Focal Loss进行训练来改善模型在不同尺度下的识别效果。Focal Loss用于解决类别不平衡问题,其权重配置为背景:1,水域:2,道路:4,建筑物:4,绿地:2。通过调整这个损失函数,模型能更聚焦于难识别的类别。
摘要由CSDN通过智能技术生成

采用同一尺度下的工区识别效果

由于原始工区在第十九级时的尺寸过大,因此截取其中的一部分区域用作图像预测,以此查看模型训练的效果。
在这里插入图片描述

图像1:
在这里插入图片描述
图像2:

在这里插入图片描述
图像3:
在这里插入图片描述

其它图像:它

利用focal loss来训练

在这里插入图片描述
权重比值:

背景水域道路建筑物绿地
12442

Focal Loss 公式:
F L = − ( 1 − p p r e d i c t i o n × p g r o u n d t r u t h ) γ log ⁡ ( p p r e d i c t i o n ) \mathrm{FL}=-(1-p_{prediction} \times p_{groundtruth})^\gamma\log{(p_{prediction})} FL=(1pprediction×pgroundtruth)γlog(pprediction)

不同尺度下的预测效果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值