自动控制原理 第四章(根轨迹法)【上】

一、根轨迹法的基本概念

1、根轨迹的基本概念

(1)根轨迹是当开环系统某一参数(如根轨迹增益K^{*},它是首1型开环传递函数对应的系数)从零变化到无穷大时,闭环特征方程的根在s平面上移动的轨迹。(根轨迹法同样适用于后面介绍的离散系统

(2)根轨迹的意义:

2、根轨迹与系统性能

(1)稳定性:

如果系统根轨迹全部落在左半s平面,则系统是稳定的

如果系统根轨迹越过虚轴进入右半s平面,则在相应K值下系统是不稳定的

根轨迹与虚轴交点处的K值就是临界开环增益

(2)根轨迹与系统性能之间有着密切的联系,利用根轨迹可以分析当系统参数(K或K^{*})增大时系统动态性能的变化趋势。图解方法可以根据已知的开环零、极点迅速地绘出闭环系统的根轨迹。

3、闭环零、极点与开环零、极点之间的关系

(1)开环零、极点表示的系统闭环传递函数:

(2)由上述推导可见:

(3)根轨迹法的任务在于,由已知的开环零、极点的分布及根轨迹增益,通过图解法找出闭环极点,一旦闭环极点确定以后,再补上闭环零点,系统性能便可以确定

4、根轨迹方程

(1)系统的闭环特征方程为1+G(s)H(s)=0,即

(2)根据幅值条件和相角条件可知,s平面上的某个点,只要满足相角条件,则该点必定在根轨迹上,至于该点所对应的K^{*},可由幅值条件得出,这意味着在s平面上满足相角条件的点必定也同时满足幅值条件,因此,相角条件是确定根轨迹s平面上一点是否在根轨迹上的充要条件

二、绘制根轨迹的基本法则

1、法则1——根轨迹的起点和终点

(1)根轨迹起始于开环极点,终止于开环零点;当开环极点个数n大于开环零点个数m时,有n-m条根轨迹分支趋向于无穷远处

(2)证明:

2、法则2——根轨迹的分支数,对称性和连续性

(1)根轨迹的分支数与开环零点数m、开环极点数n中的大者相等,根轨迹连续并且对称于实轴

(2)证明:

(3)由对称性,只需画出s平面上半部和实轴上的根轨迹,下半部的根轨迹即可对称画出

3、法则3——实轴上的根轨迹

(1)实轴上的某一区域,若其右边开环实数零、极点个数之和为奇数,则该区域一定是根轨迹

(2)证明:

4、法则4——根之和

(1)当系统开环传递函数G(s)H(s)的分子、分母阶次差n-m大于等于2时,系统闭环极点之和等于系统开环极点之和

(2)证明:

(3)n-m\geq 2时,随着K^{*}的增大,若一部分极点总体向右移动,则另一部分极点必然总体上向左移动,且左、右移动的距离增量之和为0

(4)若系统有2个开环极点,1个开环零点,且在复平面存在根轨迹,则复平面的根轨迹一定是以该零点为圆心的圆弧

(5)举例:

5、法则5——根轨迹的渐近线

(1)当系统开环极点个数n大于开环零点个数m时,有n-m条根轨迹分支沿着与实轴夹角为\varphi _{a}、交点为\sigma _{a}的一组渐近线趋向于无穷远处,且有

(2)证明:

(3)举例:

6、法则6——根轨迹的分离点

(1)两条或两条以上根轨迹分支在s平面上相遇又分离的分离点,其坐标d是如下方程的解。(将分离点代回特征方程或根据幅值条件可解得其对应的K^{*}

(2)举例:

(3)关于根轨迹对称性的一个定理:若开环零极点均为偶数个,且关于一条平行于虚轴的直线左右对称分布,则根轨迹一定关于该直线左右对称。

7、法则7——根轨迹与虚轴的交点

(1)若根轨迹与虚轴相交,则意味着闭环特征方程出现纯虚根,因此,可在闭环特征方程中令s=j\omega,然后分别令方程的实部和虚部均为零,从中求得交点的坐标值及其相应的K^{*}。(根轨迹与虚轴相交,表明系统在相应K^{*}值下处于临界稳定状态,故亦可用劳斯稳定判据去求出交点的坐标值及其相应的K^{*}

(2)举例:

8、法则8——根轨迹的起始角和终止角

(1)根轨迹离开开环复数极点处的切线与正实轴的夹角称为起始角,以\theta _{p_{i}}表示;根轨迹进入开环复数零点处的切线与正实轴的夹角称为终止角,以\varphi _{p_{i}}表示;起始角和终止角可直接利用相角条件求出

(2)举例:

9、综合例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zevalin爱灰灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值