自动控制原理(根轨迹)

一、“根”的作用

        “根”与系统中的“极点”相同。


        拿一阶系统为例:

         则:

                x(s)=\frac{1}{s+a}

       令:

                x(s)=0

        即,得根为:

                p=-a

        对x(s)进行Laplace逆变换,可得时间函数为:

                x(t)=e^{-at},其中-a就是函数的“根”。

        若a>0,则函数图像为指数衰减的形式:

         对于一般的一阶系统而言,若用复平面表示其系统的根,那一定落在实数轴上。

        一阶系统中很多指标与“根”都息息相关,如时间常数、稳态时间等。

       


        再拿二阶系统为例:

        

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值