基本变量和自由变量
若某方程组经过化简都得到:
{x1+6x2+3x4=0x3−4x4=5x5=7\begin{cases}x_1+6x_2+\quad\quad3x_4\quad=0\\\quad \quad \quad \quad \quad x_3-4x_4\quad=5\\\quad \quad \quad \quad \quad \quad \quad \quad \quad x_5=7\end{cases}⎩⎪⎨⎪⎧x1+6x2+3x4=0x3−4x4=5x5=7
则该方程组的通解为:
{x1=−6x2−3x4x2为自由变量x3=5+4x4x4为自由变量x5=7\begin{cases}x_1=-6x_2-3x_4\\x_2为自由变量\\x_3=5+4x_4\\x_4为自由变量\\x_5=7\end{cases}⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧x1=−6x2−3x4x2为自由变量x3=5+4x4x4为自由变量x5=7
其中x1x_1x1,x3x_3x3,x5x_5x5为基本变量,剩下的x2x_2x2和x4x_4x4为自由变量。
若齐次方程Ax=0Ax=0Ax=0的通解至少有一个自由变量,则此齐次方程有非平凡解。
将上述方程的通解写成参数向量形式
方法如下:
x=[x1x2x3x4x5]=[−6x2−3x4x25+4x4x47]=[00507]+[−6x2x2000]+[−3x404x4x40]=[00507]+x2[−61000]+x4[−30410]x=\begin{bmatrix}x_1\\x_2\\x_3\\x_4\\x_5 \end{bmatrix}=\begin{bmatrix}-6x_2-3x_4\\x_2\\5+4x_4\\x_4\\7 \end{bmatrix}= \begin{bmatrix}0\\0\\5\\0\\7\end{bmatrix}+ \begin{bmatrix}-6x_2\\x_2\\0\\0\\0\end{bmatrix}+ \begin{bmatrix}-3x_4\\0\\4x_4\\x_4\\0 \end{bmatrix}=\begin{bmatrix}0\\0\\5\\0\\7\end{bmatrix}+ x_2\begin{bmatrix}-6\\1\\0\\0\\0\end{bmatrix}+ x_4\begin{bmatrix}-3\\0\\4\\1\\0 \end{bmatrix}x=⎣⎢⎢⎢⎢⎡x1x2x3x4x5⎦⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎡−6x2−3x4x25+4x4x47⎦⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎡00507⎦⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎡−6x2x2000⎦⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎡−3x404x4x40⎦⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎡00507⎦⎥⎥⎥⎥⎤+x2⎣⎢⎢⎢⎢⎡−61000⎦⎥⎥⎥⎥⎤+x4⎣⎢⎢⎢⎢⎡−30410⎦⎥⎥⎥⎥⎤
令:
p=[00507]p=\begin{bmatrix}0\\0\\5\\0\\7\end{bmatrix}p=⎣⎢⎢⎢⎢⎡00507⎦⎥⎥⎥⎥⎤
u=[−61000]u=\begin{bmatrix}-6\\1\\0\\0\\0\end{bmatrix}u=⎣⎢⎢⎢⎢⎡−61000⎦⎥⎥⎥⎥⎤
v=[−30410]v=\begin{bmatrix}-3\\0\\4\\1\\0 \end{bmatrix}v=⎣⎢⎢⎢⎢⎡−30410⎦⎥⎥⎥⎥⎤
则上述方程组的通解的向量形式为:
x=p+x2u+x4vx=p+x_2 u+x_4 vx=p+x2u+x4v