【论文阅读】基于贝叶斯广义核推理的可通行区域建图

标题:Bayesian Generalized Kernel Inference forTerrain Traversability Mapping
作者:Tixiao Shan,Jinkun Wang,Brendan Englot and Kevin Doherty
来源:CoRL 2018
代码:
https://github.com/TixiaoShan/traversability_mapping/tree/master/traversability_mapping

1. 主要工作

本文提出贝叶斯广义核推理来解决可通行区域建图问题:
【1】将BGK高程推断应用于解决地形建图中遇到的稀疏数据问题;
【2】仅对选定位置的高程数据进行可通行性计算,从而减轻了计算负担;
【3】通过BGK可通行性推断来估计其他位置的可通行性。

这个框架可以使用稀疏激光雷达数据和与小型UGV兼容的硬件来实时建立可通行区域地图,是贝叶斯广义核推断在可通行性地图上的第一次应用。

2. 系统流程

在这里插入图片描述

3. 基于贝叶斯广义核推理的可通行区域建图

3.1 贝叶斯广义核推理

给定观测: D = { ( x i , y i ) i = 1 : N } \mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)_{i=1: N}\right\} D={(xi,yi)i=1:N},试图推断在潜空间上参数化的目标值的概率分布:
Θ : p ( y ∗ ∣ x ∗ , D ) ∝ ∫ p ( y ∗ ∣ θ ∗ ) p ( θ ∗ ∣ x ∗ , D ) d θ ∗ \Theta: p\left(y^{*} \mid \mathbf{x}^{*}, \mathcal{D}\right) \propto \int p\left(y^{*} \mid \boldsymbol{\theta}^{*}\right) p\left(\boldsymbol{\theta}^{*} \mid \mathbf{x}^{*}, \mathcal{D}\right) d \boldsymbol{\theta}^{*} Θ:p(yx,D)p(yθ)p(θx,D)dθ

其中,
p ( θ ∗ ∣ x ∗ , D ) ∝ ∫ θ 1 ⋅ N ∏ i = 1 N p ( y i ∣ θ i ) p ( θ 1 : N , θ ∗ ∣ x 1 : N , x ∗ ) d θ 1 : N p\left(\boldsymbol{\theta}^{*} \mid \mathbf{x}^{*}, \mathcal{D}\right) \propto \int_{\boldsymbol{\theta}_{1 \cdot N}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\theta}_{i}\right) p\left(\boldsymbol{\theta}_{1: N}, \boldsymbol{\theta}^{*} \mid \mathbf{x}_{1: N}, \mathbf{x}^{*}\right) d \boldsymbol{\theta}_{1: N} p(θx,D)θ1Ni=1Np(yiθi)p(θ1:N,θx1:N,x)dθ1:N

为与目标输入相关的潜参数的后验分布。

在高斯过程中,假设所有参数 θ \theta θ 是相关的,而在贝叶斯广义核推理中,假设在给定目标输入的情况下,与观测输入相关的参数条件独立:
p ( θ 1 : N , θ ∗ ∣ x 1 : N , x ∗ ) = p\left(\boldsymbol{\theta}_{1: N}, \boldsymbol{\theta}^{*} \mid \mathbf{x}_{1: N}, \mathbf{x}^{*}\right)= p(θ1:N,θx1:N,x)= ∏ i = 1 N p ( θ i ∣ x i , θ ∗ , x ∗ ) p ( θ ∗ ∣ x ∗ ) , \prod_{i=1}^{N} p\left(\boldsymbol{\theta}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}^{*}, \mathbf{x}^{*}\right) p\left(\boldsymbol{\theta}^{*} \mid \mathbf{x}^{*}\right), i=1Np(θixi,θ,x)p(θx),

将其代入上式可得:

p ( θ ∗ ∣ x ∗ , D ) ∝ p\left(\boldsymbol{\theta}^{*} \mid \mathbf{x}^{*}, \mathcal{D}\right) \propto p(θx,D) ∏ i = 1 N p ( y i ∣ θ ∗ , x ∗ , x i ) p ( θ ∗ ∣ x ∗ ) \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\theta}^{*}, \mathbf{x}^{*}, \mathbf{x}_{i}\right) p\left(\boldsymbol{\theta}^{*} \mid \mathbf{x}^{*}\right) i=1Np(yiθ,x,xi)p(θx)

其中, p ( y i ∣ θ ∗ , x ∗ , x i ) p\left(y_{i} \mid \boldsymbol{\theta}^{*}, \mathbf{x}^{*}, \mathbf{x}_{i}\right) p(yiθ,x,xi) 为扩展似然分布。

通过构造一个平滑的扩展似然模型,可以得到(见参考文献[1],2.1节):

p ( θ ∗ ∣ x ∗ , D ) ∝ ∏ i = 1 N p ( y i ∣ θ ∗ ) k ( x i , x ∗ ) p ( θ ∗ ∣ x ∗ ) . . . ( 1 ) p\left(\boldsymbol{\theta}^{*} \mid \mathbf{x}^{*}, \mathcal{D}\right) \propto \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\theta}^{*}\right)^{k\left(\mathbf{x}_{i}, \mathbf{x}^{*}\right)} p\left(\boldsymbol{\theta}^{*} \mid \mathbf{x}^{*}\right)...(1) p(θx,D)i=1Np(yiθ)k(xi,x)p(θx)...(1)

其中, k ( ⋅ , ⋅ ) k(\cdot, \cdot) k(,)为核函数。

如果似然模型来自指数族,并且假设相应的共轭先验,则可以精确地确定后验。

3.2 稀疏核

k ( x , x ∗ ) = { 2 + cos ⁡ ( 2 π d l ) 3 ( 1 − d l ) + 1 2 π sin ⁡ ( 2 π d l ) ,  if  d ≤ l 0 ,  otherwise  k\left(\mathbf{x}, \mathbf{x}^{*}\right)=\left\{\begin{array} {ll}\frac{2+\cos \left(2 \pi \frac{d}{l}\right)}{3}\left(1-\frac{d}{l}\right)+\frac{1}{2 \pi} \sin \left(2 \pi \frac{d}{l}\right), & \text { if } d \leq l \\ 0, & \text { otherwise }\end{array}\right. k(x,x)={32+cos(2πld)(1ld)+2π1sin(2πld),0, if dl otherwise 

其中, d = ∥ x − x ∗ ∥ 2 d=\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2} d=xx2,核的支持区间为 [ 0 , l ] [0, l] [0,l],这使得能够在对数线性时间内执行精确的推理。

3.3 贝叶斯核高程回归

假设高度 y y y服从高斯分布: y ∼ N ( μ , σ 2 ) y \sim \mathcal{N}\left(\mu, \sigma^{2}\right) yN(μ,σ2),其中方差 σ 2 \sigma^{2} σ2 已知,共轭先验也服从高斯分布: μ ∼ N ( μ 0 , σ 2 / λ ) \mu \sim \mathcal{N}\left(\mu_{0}, \sigma^{2} / \lambda\right) μN(μ0,σ2/λ),其中,超参数 λ \lambda λ反映对先验的置信度, λ = 0 \lambda=0 λ=0 表示没有先验, λ → ∞ \lambda \rightarrow \infty λ 表示具有十分充足的先验知识。

由公式(1)可知:

p ( μ ∗ ∣ x ∗ , D ) ∝ ∏ i = 1 N exp ⁡ { − 1 2 ( y i − μ ) 2 σ 2 k ( x i , x ∗ ) } exp ⁡ { − 1 2 ( μ − μ 0 ) 2 σ 2 λ } p\left(\mu^{*} \mid \mathbf{x}^{*}, \mathcal{D}\right) \propto \prod_{i=1}^{N} \exp \left\{-\frac{1}{2} \frac{\left(y_{i}-\mu\right)^{2}}{\sigma^{2}} k\left(\mathbf{x}_{i}, \mathbf{x}^{*}\right)\right\} \exp \left\{-\frac{1}{2} \frac{\left(\mu-\mu_{0}\right)^{2}}{\sigma^{2}} \lambda\right\} p(μx,D)i=1Nexp{21σ2(yiμ)2k(xi,x)}exp{21σ2(μμ0)2λ}

可得后验参数的均值和方差:

E [ μ ∗ ∣ λ , D , x ∗ ] = λ μ 0 + ∑ i = 1 N k ( x i , x ∗ ) y i λ + ∑ i = 1 N k ( x i , x ∗ ) \mathbb{E}\left[\mu^{*} \mid \lambda, \mathcal{D}, \mathbf{x}^{*}\right]=\frac{\lambda \mu_{0}+\sum_{i=1}^{N} k\left(\mathbf{x}_{i}, \mathbf{x}^{*}\right) y_{i}} {\lambda+\sum_{i=1}^{N} k\left(\mathbf{x}_{i}, \mathbf{x}^{*}\right)} E[μλ,D,x]=λ+i=1Nk(xi,x)λμ0+i=1Nk(xi,x)yi

Var ⁡ [ μ ∗ ∣ λ , D , x ∗ ] = σ 2 λ ∗ \quad \operatorname{Var}\left[\mu^{*} \mid \lambda, \mathcal{D}, \mathbf{x}^{*}\right]=\frac{\sigma^{2}}{\lambda^{*}} Var[μλ,D,x]=λσ2

其中, λ ∗ = λ + ∑ i = 1 N k ( x i , x ∗ ) \lambda^{*}=\lambda+\sum_{i=1}^{N} k\left(\mathbf{x}_{i}, \mathbf{x}^{*}\right) λ=λ+i=1Nk(xi,x)

从而,由 E [ y ∗ ∣ λ , D , x ∗ ] = E [ μ ∗ ∣ λ , D , x ∗ ] \mathbb{E}\left[y^{*} \mid \lambda, \mathcal{D}, \mathbf{x}^{*}\right]=\mathbb{E}\left[\mu^{*} \mid \lambda, \mathcal{D}, \mathbf{x}^{*}\right] E[yλ,D,x]=E[μλ,D,x] 可以得到后验预测分布的均值,即通过推理得到的高程数据 y y y,进一步得到稠密的高程图 m e m_e me.

3.4 贝叶斯核可通行性分类

将每个网格单元的可通行性建模为满足伯努利二元分布的随机变量, y ∼ Ber ⁡ ( θ ) y \sim \operatorname{Ber}(\theta) yBer(θ),通过对参数 θ ∗ \theta^* θ 的估计,来进行可通行性分类。

采用的共轭先验满足Beta分布, θ ∼ Beta ⁡ ( α 0 , β 0 ) \theta \sim \operatorname{Beta}\left(\alpha_{0}, \beta_{0}\right) θBeta(α0,β0),其中, α 0 \alpha_{0} α0 β 0 \beta_{0} β0为超参数。

后验依然满足Beta分布:

p ( θ ∗ ∣ x ∗ , D ) ∝ θ α ∗ − 1 ( 1 − θ ) β ∗ − 1 p\left(\theta^{*} \mid \mathbf{x}^{*}, \mathcal{D}\right) \propto \theta^{\alpha^{*}-1}(1-\theta)^{\beta^{*}-1} p(θx,D)θα1(1θ)β1

其中,

α ∗ = α 0 + ∑ i = 1 N k ( x i , x ∗ ) y i \alpha^{*}=\alpha_{0}+\sum_{i=1}^{N} k\left(\mathbf{x}_{i}, \mathbf{x}^{*}\right) y_{i} α=α0+i=1Nk(xi,x)yi β ∗ = β 0 + ∑ i = 1 N k ( x i , x ∗ ) ( 1 − y i ) \quad \beta^{*}=\beta_{0}+\sum_{i=1}^{N} k\left(\mathbf{x}_{i}, \mathbf{x}^{*}\right)\left(1-y_{i}\right) β=β0+i=1Nk(xi,x)(1yi)

从而可以得到后验预测分布的均值和方差:

E [ y ∗ ∣ α 0 , β 0 , D , x ∗ ] = α ∗ α ∗ + β ∗ \mathbb{E}\left[y^{*} \mid \alpha_{0}, \beta_{0}, \mathcal{D}, \mathbf{x}^{*}\right]=\frac{\alpha^{*}}{\alpha^{*}+\beta^{*}} E[yα0,β0,D,x]=α+βα Var ⁡ [ y ∗ ∣ α 0 , β 0 , D , x ∗ ] = α ∗ β ∗ ( α ∗ + β ∗ ) 2 \quad \operatorname{Var}\left[y^{*} \mid \alpha_{0}, \beta_{0}, \mathcal{D}, \mathbf{x}^{*}\right]=\frac{\alpha^{*} \beta^{*}}{\left(\alpha^{*}+\beta^{*}\right)^{2}} Var[yα0,β0,D,x]=(α+β)2αβ

3.4.1 可通行性训练数据

网格单元的可通行性主要由3个特征决定,陡度 h h h,倾斜度 s s s,粗糙度 r r r

v = α 1 h h crit  + α 2 s s crit  + α 3 r r crit  . . . ( 2 ) v=\alpha_{1} \frac{h}{h_{\text {crit }}}+\alpha_{2} \frac{s}{s_{\text {crit }}}+\alpha_{3} \frac{r}{r_{\text {crit }}}...(2) v=α1hcrit h+α2scrit s+α3rcrit r...(2)

其中, α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1α2α3 分别代表权重,相加之和为1, h crit  , s crit  , r crit  {h_{\text {crit }}},{s_{\text {crit }}},{r_{\text {crit }}} hcrit scrit rcrit ,分别代表可能会引起机器人侧翻,卡住的最大的陡度、倾斜度、粗糙度。

v v v 在[0,1]之间,小值表示局部地形平坦光滑,大值表示地形粗糙,如果有其中一个特征超过其临界值,则相应的单元格被标记为不可通行。

其中,陡度 h h h,倾斜度 s s s,粗糙度 r r r的计算参考[2](II C).

当网格单元的高度由于最新测量的到来而发生改变时,至少在机器人半径内的所有相邻单元的可通行性需要重新计算。然而,使用等式(2)直接计算可通行性涉及平面拟合和特征值分解,难以实时使用。

因此,仅对与激光雷达点直接相交的网格单元进行可通行性计算,再通过BGK可通行性推断来估计其他位置的可通行性。

3.4.2 可通行性推断

可通行地图 m v m_v mv中每个网格单元的状态:

state = {  traversable,   if  v < v t h , σ 2 < σ t h 2  non-traversable,   otherwise  =\left\{\begin{array}{ll}\text { traversable, } & \text { if } v<v_{t h}, \sigma^{2}<\sigma_{t h}^{2} \\ \text { non-traversable, } & \text { otherwise }\end{array}\right. ={ traversable,  non-traversable,  if v<vth,σ2<σth2 otherwise 

v v v是该单元格预测的可通行性的均值, v t h v_{th} vth是可通行性的阈值,方差的阈值为 σ t h 2 \sigma_{t h}^{2} σth2,当方差 σ 2 \sigma^{2} σ2大于 σ t h 2 \sigma_{t h}^{2} σth2时,单元格也被标记为不可通过。

4. 实验结果

本文在仿真和实际环境进行了测试。

4.1 仿真环境

4.1.1 结构化环境-City

在这里插入图片描述
图1:结构化环境仿真:上图(a)中是Gazebo中模拟城市环境的俯视图。(b)是可通行区域地图的ground truth。(c)是由基线法生成的可通行区域地图。(d) 是由BGK+Trav方法生成的可通行区域地图。(e)是本文提出的方法生成的可通行区域地图。(f)是计算出来的BGK + ^+ +方差图。白色颜色表示方差低,洋红色表示方差高。

4.1.2 非结构化环境-Aerial

在这里插入图片描述
图2:非结构化环境仿真:空中模拟地形模型如图(a)所示. (b),(c),(d),(e)分别是ground truth,基线法,BGK+Trav,BGK + ^+ +。(f)是BGK + ^+ +中的方差图。
在这里插入图片描述

图3:ROC曲线

在这里插入图片描述

表1:不同建图方法的量化结果

4.2 大型的城市环境

在这里插入图片描述
图4:使用BGK + ^+ +生成的大场景城市可通行区域地图:左边的图是卫星照片。中间的图是BGK + ^+ +方法生成的可通行区域地图。右图是一些代表性场景的结果。

所提出的方法成功地区分了可通行区域和不可通行区域.

5. 结论

本文提出将贝叶斯广义核推理用于可通性地形图。

本文的框架独特之处在于它的组成,具有两个顺序的步骤。第一个步骤实现了高度推断来解决可用点云的稀疏性,然后第二个步骤实现了可通性推断来减少穷举可通性计算的负担。

本文提出的框架已经在模拟数据和真实数据中进行了验证,为激光雷达实时构建地形图提供了效率和准确性。未来的工作将考虑协方差信息的实际使用,以更好地支持复杂环境下的安全导航。

参考文献

[1] W. R. V ega-Brown, M. Doniec, and N. G. Roy. Nonparametric Bayesian inference on multi-variate exponential families. Advances in Neural Information Processing Systems, pp. 2546-
2554, 2014.
[2] A. Chilian and H. Hirschmuller. Stereo Camera Based Navigation of Mobile Robots on Rough
Terrain. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 4571-4576, 2009.

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值