这段代码使用Matlab中的fmincon函数来解决一个优化问题,使受约束的代价函数最小化。代价函数表示系统状态与期望路径和控制输入之间的偏差。约束将控制输入限制在指定的范围内。然后使用优化的控制输入来模拟系统动力学并绘制结果路径。
clear all;
close all;
clc;
% Define the parameters of the system
A = [0 1; 0 0];
B = [0; 1];
Q = [1 0; 0 1];
R = [1];
N = [0; 0];
x0 = [0; 1];
% Define the constraints on the control inputs
umin = -1;
umax = 1;
% Define the horizon length and time step
T = 10;
dt = 0.1;
% Discretize the system dynamics
sys = c2d(ss(A, B, eye(2), zeros(2, 1)), dt);
Ad = sys.A;
Bd = sys.B;
% Define the objective function for the optimization
fun = @(u) 0.5 * dt * sum(sum((Ad * x0 + Bd * u(:, 1) - x0).^2 .* Q)) + ...
0.5 * sum(u(:, 1).^2 .* R);
% Define the constraints for the optimization
lb = umin * ones(T, 1);
ub = umax * ones(T, 1);
% Perform the optimization to find the optimal control inputs
options = optimoptions('fmincon', 'Display', 'iter');
u = fmincon(fun, 0.1 * ones(T, 1), [], [], [], [], lb, ub, [], options);
% Simulate the system with the optimal control inputs
x = zeros(2, T);
x(:, 1) = x0;
for i = 2:T
x(:, i) = Ad * x(:, i-1) + Bd * u(i-1);
end
% Plot the results
t = 0:dt:T-dt;
figure;
plot(t, x(1, :));
xlabel('Time (s)');
ylabel('Position (m)');
title('Optimal Path Planning');
该代码解决了一个简单的二维系统的最优控制问题,定义了状态转换函数f和代价函数cost。动态规划算法从最终状态开始,迭代地计算最优控制输入和状态,将结果存储在数组X、U和j中。最后,使用折线图绘制最优路径。
% Define the parameters of the system
params.N = 100; % number of time steps
params.dt = 0.01; % time step size
params.x0 = [0, 0]; % initial state
params.xf = [10, 10]; % final state
% Define the state transition function
A = [1, params.dt; 0, 1];
B = [params.dt^2/2; params.dt];
f = @(x,u) A*x + B*u;
% Define the cost function
Q = eye(2);
R = 1;
cost = @(x,u) x'*Q*x + u'*R*u;
% Perform Dynamic Programming
[X,U,J] = dp_path_planning(f, cost, params);
% Plot the path
figure;
hold on;
plot(X(1,:), X(2,:), '-b', 'LineWidth', 2);
plot(params.x0(1), params.x0(2), 'or', 'MarkerSize', 10);
plot(params.xf(1), params.xf(2), 'og', 'MarkerSize', 10);
xlabel('x'); ylabel('y');
title('Optimal Path');
hold off;
============================================================================================
% Define the dynamic programming function
function [X,U,J] = dp_path_planning(f, cost, params)
N = params.N;
dt = params.dt;
x0 = params.x0;
xf = params.xf;
X = zeros(2,N+1);
U = zeros(1,N);
J = zeros(N+1,1);
X(:,N+1) = xf;
J(N+1) = 0;
for i = N:-1:1
minJ = inf;
minU = 0;
for u = -5:0.1:5
x = f(X(:,i+1),u);
J_ = cost(x,u) + J(i+1);
if J_ < minJ
minJ = J_;
minU = u;
X(:,i) = x;
end
end
U(i) = minU;
J(i) = minJ;
end
X = [x0, X];
end