路径规划的最优控制Matlab代码分享

这段代码展示了如何使用Matlab的fmincon函数解决一个优化问题,最小化受约束的代价函数,该函数表示系统状态与期望路径和控制输入的偏差。同时,通过动态规划算法进行路径规划,计算最优控制输入并模拟系统动力学,最终绘制出最优路径。
摘要由CSDN通过智能技术生成

这段代码使用Matlab中的fmincon函数来解决一个优化问题,使受约束的代价函数最小化。代价函数表示系统状态与期望路径和控制输入之间的偏差。约束将控制输入限制在指定的范围内。然后使用优化的控制输入来模拟系统动力学并绘制结果路径。

clear all;
close all;
clc;

% Define the parameters of the system
A = [0 1; 0 0];
B = [0; 1];
Q = [1 0; 0 1];
R = [1];
N = [0; 0];
x0 = [0; 1];

% Define the constraints on the control inputs
umin = -1;
umax = 1;

% Define the horizon length and time step
T = 10;
dt = 0.1;

% Discretize the system dynamics
sys = c2d(ss(A, B, eye(2), zeros(2, 1)), dt);
Ad = sys.A;
Bd = sys.B;

% Define the objective function for the optimization
fun = @(u) 0.5 * dt * sum(sum((Ad * x0 + Bd * u(:, 1) - x0).^2 .* Q)) + ...
         0.5 * sum(u(:, 1).^2 .* R);

% Define the constraints for the optimization
lb = umin * ones(T, 1);
ub = umax * ones(T, 1);

% Perform the optimization to find the optimal control inputs
options = optimoptions('fmincon', 'Display', 'iter');
u = fmincon(fun, 0.1 * ones(T, 1), [], [], [], [], lb, ub, [], options);

% Simulate the system with the optimal control inputs
x = zeros(2, T);
x(:, 1) = x0;
for i = 2:T
    x(:, i) = Ad * x(:, i-1) + Bd * u(i-1);
end

% Plot the results
t = 0:dt:T-dt;
figure;
plot(t, x(1, :));
xlabel('Time (s)');
ylabel('Position (m)');
title('Optimal Path Planning');

该代码解决了一个简单的二维系统的最优控制问题,定义了状态转换函数f和代价函数cost。动态规划算法从最终状态开始,迭代地计算最优控制输入和状态,将结果存储在数组X、U和j中。最后,使用折线图绘制最优路径。

% Define the parameters of the system
params.N = 100; % number of time steps
params.dt = 0.01; % time step size
params.x0 = [0, 0]; % initial state
params.xf = [10, 10]; % final state

% Define the state transition function
A = [1, params.dt; 0, 1];
B = [params.dt^2/2; params.dt];
f = @(x,u) A*x + B*u;

% Define the cost function
Q = eye(2);
R = 1;
cost = @(x,u) x'*Q*x + u'*R*u;

% Perform Dynamic Programming
[X,U,J] = dp_path_planning(f, cost, params);

% Plot the path
figure;
hold on;
plot(X(1,:), X(2,:), '-b', 'LineWidth', 2);
plot(params.x0(1), params.x0(2), 'or', 'MarkerSize', 10);
plot(params.xf(1), params.xf(2), 'og', 'MarkerSize', 10);
xlabel('x'); ylabel('y');
title('Optimal Path');
hold off;
============================================================================================
% Define the dynamic programming function
function [X,U,J] = dp_path_planning(f, cost, params)
    N = params.N;
    dt = params.dt;
    x0 = params.x0;
    xf = params.xf;
    
    X = zeros(2,N+1);
    U = zeros(1,N);
    J = zeros(N+1,1);
    
    X(:,N+1) = xf;
    J(N+1) = 0;
    
    for i = N:-1:1
        minJ = inf;
        minU = 0;
        for u = -5:0.1:5
            x = f(X(:,i+1),u);
            J_ = cost(x,u) + J(i+1);
            if J_ < minJ
                minJ = J_;
                minU = u;
                X(:,i) = x;
            end
        end
        U(i) = minU;
        J(i) = minJ;
    end
    
    X = [x0, X];
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

真的是小恐龙吗?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值