卡方检验——离散型特征相关性分析

import pandas as pd  #导入读入数据的包
from sklearn.feature_selection import SelectKBest  #卡方检验->判断离散型特征是否相关
from sklearn.feature_selection import chi2

#读取数据
data = pd.read_csv('./2013年八城市融合数据.csv',encoding='gbk')

x= data[['归属感有无(0:有 1:无)','户口性质(0:农业 1:非农业)','体制内人员(0:非体制内 1:体制内)','大学以上学历(0:大学以下 1:大学以上)','本地人愿意接受我(0:同意 1:不同意)']]
y = data['本地养老(0:非本地 1:本地)']
selectKBest = SelectKBest(chi2, k=5) 
X_new = selectKBest.fit_transform(x, y)
p_values = zip(select_k_best.scores_,select_k_best.pvalues_)
dict_p_values  = dict(zip(['归属感有无(0:有 1:无)','户口性质(0:农业 1:非农业)','体制内人员(0:非体制内 1:体制内)','大学以上学历(0:大学以下 1:大学以上)','本地人愿意接受我(0:同意 1:不同意)'],p_values))

sorted(dict_p_scores.items(),key=lambda x:x[1],reverse=False)

在这里插入图片描述

# 当p值小于0.05时,就说这个独立变量与输出结果有关系
for i in list(select_k_best.pvalues_):
    if i<0.05:
        print('True')

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶冻茶茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>