DWRSeg扩张式残差
使用DWRSeg模块改进C2f和Bottleneck模块
针对小目标
创新点如下,多尺度特征提取机制深度研究和创新DWR模块和SIR模块提出
该方法能让网络更急灵活的适应不同尺度的特征,准确的识别出和分割图像中的物体,

文章简介
许多研究都直接彩英多速率深度分离扩张卷积
从单一输入特征,捕获多尺度上下文信息,
目的去提高实时语义分割的特征提取效率
设计可能会因为不合理的结构和超参数去导致难以获得多尺度上下文的信息,为了降低提取尺度的上下文难度,我们提出高效方法
将原始单步方法分解为两步,区域残差化,语义残差化
第一步,在该方法中多速率深度分离扩张卷积在特征提取很重要,
第二部,对于上步得到来的区域形式特征图,执行简单额基于语义的形态学过滤,去提高效率
充分利用的区域特征图,设计了扩张率和每个阶段扩张卷积的容量
我们为高级和低级分别设计扩张残差模块和简单反向残差模块,形成强大的DWR分割网络

许多当前研究直接采用多速率深度分离扩张卷积
从单一输入特征图和同时捕获多尺度上下文信息
,从而提高实时语义分割的特征提取效率
方法分为两步
区域残差化,语义残差化
1、该方法中多速率深度分离扩张卷积在特征提取
2、提高的简介的区域特征图,使用基于语义的形态学过滤
为了更高效得的利用区域特征图,我们转么你设计扩张率和每个阶段的扩张容量
3、使用了扩张残差

直接采用多数率的深度可分离扩张卷积,单一输入特征图同时捕获多尺度上下文信息,我们提出高效的多尺度特征提取方法
两步,
第一步区域残差化,和语义残差化,
两种第在多速率深度可分离扩张卷积在特征提取重要
第二,提供每个简洁的形式特征图,去执行简单的基于语义的形态学过滤
为了充分利用所有可实现的预取特征图
我们精心设计了扩张率和每个阶段扩张卷积的容量,为了高级和低级网络分别设计了扩张残差模块和简单反向残差模块,形成强大的DWR分割网络
DWRSeg主要思想
创新点如下
1、多尺度的特区机制特征
利用深度可分离扩张卷积进行多尺度的特征提取
并设计了一种高效的两步残差特征提起方法
(区域残差到语义残差)
显著的提高实时语义分割捕获多尺度的信息
效率
2、创新的DWR模块和SIR模块的提出
一个新颖的DWR扩张残差模块和SIR简单反向残差模块,
这些具有精心设计的接受大小,分别应用于网络层的的上下层
效果不错

多尺度特征提取机制
1、两步残差特征提取,
包含区域残差化,语义残差化,目的都是提高实时语义分割多尺度信息捕获
2、区域残差化,
将预取特征图分成几组,对这些不同的组,进行不同速率的深度分离扩张卷积
3、语义残差
使用一个具有期望的深度可分离扩张卷积对每个简洁的区域进行基于语义的形态学过滤
改变多速率深度扩张卷积的特征提取
尝试获取尽可能多的复杂语义信息转化为简介表达的特征图进行简单的形态学过滤
7、精细化扩张率和容量设计
充分利用每个网络阶段去实现不同预取大小的特征图,需要精心设计扩张率和深度而分离卷积的 容量,去匹配每个网络阶段的不同接受要求
DWR模块,
场景应用,主要用于网络的高阶段,采用设计的两步特征提取方法
特征提取,该模块利用两步残差特征iqu方法,区域残差和语义残差
有效提高语义分割多尺度信息捕获


总结: 这两个模块的设计改进对于提高实时语义分割网络的性能至关重要,高效处理多尺度上下文信息的能力方面
955

被折叠的 条评论
为什么被折叠?



