四元数动力学(三/四) :四元数的规定,扰动、微、积分

参考文献:《Quaternion kinematics for the error-state Kalman filter》

本系列文章主要参考Sola的四元数动力学论文进行学习总结,便于自己查看,仅供参考。

3.1 四元数的常见规定

对于Hamilton定义(本文定义):右乘进行扰动,表达local系(new)到global系(old)的变换。

对于JPL定义:左乘进行扰动,表达global系(old)到local系(new)的变换。

 

4.1 SO(3)群上的加减操作

    

4.2 四种微分定义 

4.2.1 向量空间到向量空间

,  

4.2.2 SO(3)到SO(3)

4.2.3 向量空间到SO(3)

4.2.4 SO(3)到向量空间

4.3 旋转的Jacobians(重点)

4.3.1 关于向量的jacobian

4.3.2 关于四元数的jacobian

等式:

4.3.3 SO(3)的右jacobian

(这里也体现了本文的Hamilton规则),

4.3.4 关于旋转向量的Jacobian

4.4 扰动 

4.4.1 局部扰动

局部扰动使用右乘法则,右侧为新系,左侧为旧系。

扰动值较小,则根据泰勒展开式,可分别近似为:

4.4.2 全局扰动

4.5 关于时间的导数

则 全局扰动的微分为:

4.5.1 全局与局部的关系

4.5.3 相关推导式

4.6 基于旋转率的时间积分

泰勒展开

多阶导:

4.6.1 零阶积分

前向积分

后向积分

中点积分

4.6.2 一阶积分

\omega (t)关于时间线性变化,其一阶导为常数,高阶为0.

\omega ^{_{n}}的自然数次方为:

,省略高次项得:

,最后由,得:

由上式可得,其第一项是零阶项积分,第二项当两次旋转轴共线时,叉积为0,此时一阶积分等价于零阶积分。

 

 

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页