范式:
- 在预训练阶段,预训练的语言模型从大规模的未标记数据中获取丰富的知识;
- 然后我们可以使用特定任务的训练数据对预训练的语言模型进行微调,以适应预训练的知识;
- 最后得到一个用于解决具体任务的模型了。
迁移学习(Transfer learning ):
把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。
大模型就是在做迁移学习的这样一种事情:先在大规模无标注数据集中进行无监督学习训练,然后引入具体的样本(标注数据)进行参数微调,得到一个能在具体任务上表现极佳的模型。