1-7 大模型基础-大模型背后的范式

本文讲述了预训练语言模型如何通过从大量未标记数据中获取知识,然后利用特定任务的训练数据进行微调,以适应并优化为解决实际问题而设计的模型。同时,强调了迁移学习的概念,即利用已为任务A训练好的模型作为起点,进一步针对任务B进行调整和优化的过程,尤其是在大模型中的应用。
摘要由CSDN通过智能技术生成

范式:

  1. 在预训练阶段,预训练的语言模型从大规模的未标记数据中获取丰富的知识;
  2. 然后我们可以使用特定任务的训练数据对预训练的语言模型进行微调,以适应预训练的知识;
  3. 最后得到一个用于解决具体任务的模型了。

迁移学习(Transfer learning ):

把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。 

大模型就是在做迁移学习的这样一种事情:先在大规模无标注数据集中进行无监督学习训练,然后引入具体的样本(标注数据)进行参数微调,得到一个能在具体任务上表现极佳的模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值