常见AI芯片算力对比(二)

本文继续探讨常见AI芯片的算力对比,重点介绍了TOPS和FLOPS这两个衡量标准,以及如何通过转换浮点运算来提升计算性能。同时,文章提到了监控SoC芯片、AI专用芯片以及PCIE加速卡/GPU在AI计算中的应用。
摘要由CSDN通过智能技术生成

常见AI芯片算力对比(二)

参考链接:https://blog.csdn.net/zh8706/article/details/112909866


1、 算力
TOPS(Tera Operations Per Second),1 TOPS代表处理器每秒钟可进行一万亿次(10^12)操作
FLOPS(floating-point operations per second),每秒所执行的浮点运算次数,1 TFLOPS(tera FLOPS)等于每秒一万亿(=10^12)次的浮点运算
因浮点运算对性能要求较高,在保证AI精度的同时可将浮点数转为整数进行计算,可大幅降低计算资源的消耗,提高计算性能,可分为INT8, INT4, INT16,INT32, INT后的数字表示整数的位数。

2、监控SoC芯片

3、AI芯片

4、PCIE加速卡/GPU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值