一、引言:气象大模型的时代价值
气象预测作为一门古老的科学,在人工智能时代迎来了革命性突破。传统数值天气预报(NWP)依赖于复杂的物理方程和超算资源,而基于深度学习的气象大模型通过数据驱动的方式,以更低的计算成本实现了媲美甚至超越传统方法的预测精度。开源气象大模型的出现进一步 democratize 了这一技术,使全球研究者和机构都能参与气象AI的创新。
本文将系统剖析开源气象大模型的实现原理,从核心架构、数据准备、训练方法到实际预测的全流程,并提供可落地的实践指南。
二、气象大模型的核心架构原理
2.1 基础网络架构选择
现代气象大模型主要采用三种主流架构:
-
Transformer架构(如华为盘古气象模型):
-
优势:强大的序列建模能力,适合处理气象场中的全局依赖关系
-
创新点:3D注意力机制处理高度维度的气象变量
-
-
图神经网络(GNN)(如GraphCast):
-
优势:天然匹配地球网格数据结构,显式建模空间关系
-
实现:将经纬度网格建模为图结构,节点表示网格点特征
-