大模型VS人脑?一文读懂大模型优劣势,彻底了解什么是大模型?

01 理解深度与上下文

大模型的限制:尽管大语言模型在处理自然语言方面取得了显著进展,但在深入解析复杂上下文或捕捉深层含义时仍显力不从心。它们擅长构建语法正确的句子,但在解析人类情感、微妙幽默及隐喻等复杂层面时,往往捉襟见肘,如同一位只掌握语言外壳,却未触及情感内核的学者。

人脑比较:想象一下孩童学习语言的旅程,起初他们或许能模仿成人话语的形,却难以捕捉其中蕴含的深意与情感色彩。随着生活经验的积累,孩子们逐渐学会了“读懂”言外之意,这种能力正是人脑在情感与语境理解上的独特优势,需要时间与经历的双重滋养。

02 数据偏差与公正性

大模型的限制:大语言模型的“三观”深受其训练数据影响。若数据源本身存在偏见,模型便难以逃脱这一桎梏,其输出也可能因此带有不公平或歧视性的色彩。

人脑比较:正如个人成长环境对其观念形成至关重要,若一个人长期沉浸在单一或狭隘的社会文化氛围中,其视野与判断力难免受限,无意中成为偏见与歧视的传递者。人脑虽具可塑性,却也需警惕环境对认知的潜在影响。

03 透明度与解释性

大模型的限制:大语言模型的工作机制如同深邃的黑洞,其决策路径复杂难测,即便是最顶尖的专家也难以完全洞悉其为何选择某一特定答案。

人脑比较:这种不透明性让人联想到人类直觉的模糊性。我们时常凭直觉做出判断,却难以准确阐述背后的逻辑链条。人脑决策过程的复杂性与多样性,使得其解释性同样面临挑战。

04 资源消耗

大模型的限制:大型语言模型的训练与运行,犹如一场对计算资源与电力的豪赌,其背后隐藏着巨大的环境与经济成本。

人脑比较:相比之下,人脑的学习过程虽同样耗费时间与精力,却无需外部能源的持续供给。我们通过学习与实践,不断提升自我,这一过程虽艰辛,却也是人类智慧与创造力的源泉。

05 安全性与廉机关建设

大模型的限制:在追求高效与智能的同时,大语言模型也面临着泄露敏感信息或生成有害内容的风险,如同一把双刃剑,既锋利又危险。

人脑比较:人类在分享与交流时,同样需警惕信息的边界与后果。不慎泄露的秘密或未经核实的传闻,都可能对他人造成伤害。因此,无论是机器还是人类,在享受信息自由的同时,都应承担起保护隐私与安全的责任。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值