这半年来,“大模型”一词飞入寻常百姓家,以前只是在IT圈相对较为封闭的圈子里流传。这一词的大规模爆发,原因在于ChatGPT的推出和广泛使用。其实类似“GPT”的模型还有很多,百度,阿里,腾讯和字节跳动等公司都有自己的模型,差异各有千秋。
AI的发展历程
人工智能(Artificial Intelligence,AI)的发展经历了多个阶段和里程碑,下面是AI的主要发展历程:
1. 早期研究阶段(1950年代-1960年代):在这个阶段,AI的研究主要集中在推理和问题解决方面。代表性的事件是1956年达特茅斯会议,它被认为是人工智能领域的起点。
2. 知识表达和推理阶段(1960年代-1970年代):在这个阶段,研究人员开始关注如何将知识表示为计算机可以理解的形式,以及如何进行推理和问题解决。代表性的成果是专家系统的发展。
3. 过拟合和知识获取阶段(1980年代):在这个阶段,人们发现了过拟合问题,并认识到获取大规模知识的困难。AI研究开始转向使用机器学习方法从数据中学习模型和知识。
4. 统计机器学习阶段(1990年代-2010年代初):在这个阶段,统计机器学习方法如支持向量机(SVM)、决策树和随机森林等成为主流。该阶段的突破包括对大规模数据的处理和特征的自动提取。
5. 深度学习阶段(2010年代至今):深度学习以多层神经网络为基础,通过使用大规模数据和强大的计算能力来训练模型。深度学习在图像识别、自然语言处理等领域取得了重大突破,如卷积神经网络和循环神经网络。
6. 当前和未来发展方向:当前,AI的发展重点包括增强学习、自然语言处理、计算机视觉、机器人技术等。人们也开始探索更复杂的AI系统,如通用人工智能(AGI)和超智能(ASI)。同时,人们也越来越关注AI的伦理、隐私和社会影响等问题。
AI经历了从早期知识推理到统计机器学习,再到深度学习的演进过程。随着技术的不断进步和应用的广泛推广,AI在各个领域都有了重大的突破和应用,为人类社会带来了巨大的变革和发展。
机器学习是一种人工智能领域的分支,旨在让计算机从数据中学习并自动改善性能,而无需明确编程。它通过构建和训练模型来识别和理解数据中的模式,然后利用这些模型进行预测、决策和推断。
深度学习是机器学习的一个分支,旨在通过模拟人脑神经网络的结构和功能来进行模式识别和决策。它基于人工神经网络的概念,通过多层的神经网络结构来学习和提取数据的高级特征。深度学习的核心是深层神经网络(Deep Neural Networks,DNNs),其中包含输入层、多个隐藏层和输出层。每个层都由多个神经元(或称为节点)组成,相邻层之间的神经元通过权重连接。深层神经网络通过学习这些权重来对输入数据进行处理和转换,从而提取出更高级别的特征。