LLM大语言模型原理、发展历程、训练方法、应用场景和未来趋势

LLM,全称Large Language Model,即大型语言模型。LLM是一种强大的人工智能算法,它通过训练大量文本数据,学习语言的语法、语义和上下文信息,从而能够对自然语言文本进行建模。这种模型在自然语言处理(NLP)领域具有广泛的应用,包括文本生成、文本分类、机器翻译、情感分析等。本文将详细介绍LLM大语言模型的原理、发展历程、训练方法、应用场景和未来趋势。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1.原理

LLM大语言模型的核心思想是通过训练大量文本数据,学习语言的语法、语义和上下文信息。这些模型通常采用深度学习技术,例如神经网络,来学习文本数据中的模式和规律。在训练过程中,模型会不断优化其参数,以提高对文本数据的建模能力。

2.发展历史

(1)2020年9月,OpenAI授权微软使用GPT-3模型,微软成为全球首个享用GPT-3能力的公司。2022年,Open AI发布ChatGPT模型用于生成自然语言文本。2023年3月15日,Open AI发布了多模态预训练大模型GPT4.0。

(2)2023年2月,谷歌发布会公布了聊天机器人Bard,它由谷歌的大语言模型LaMDA驱动。2023年3月22日,谷歌开放Bard的公测,首先面向美国和英国地区启动,未来逐步在其它地区上线。

(3)2023年2月7日,百度正式宣布将推出文心一言,3月16日正式上线。文心一言的底层技术基础为文心大模型,底层逻辑是通过百度智能云提供服务,吸引企业和机构客户使用API和基础设施,共同搭建AI模型、开发应用,实现产业AI普惠。

(4)2023年4月13日,亚马逊云服务部门在官方博客宣布推出Bedrock生成式人工智能服务,以及自有的大语言模型泰坦(Titan)。

(5)2024年3月,Databricks 推出大语言模型 DBRX,号称“现阶段最强开源 AI”。

(6)2024年4月,在瑞士举行的第27届联合国科技大会上,世界数字技术院(WDTA)发布了《生成式人工智能应用安全测试标准》和《大语言模型安全测试方法》两项国际标准,是由OpenAI、蚂蚁集团、科大讯飞、谷歌、微软、英伟达、百度、腾讯等数十家单位的多名专家学者共同编制而成。

3.发展历程

大型语言模型的发展历程可以分为三个阶段:统计机器翻译、深度学习和预训练模型。

(1)统计机器翻译:在21世纪初,统计机器翻译(SMT)成为自然语言处理领域的主流方法。SMT方法基于统计学原理,通过分析大量双语文本数据,学习源语言和目标语言之间的映射关系。然而,SMT方法在处理长句子和复杂语言结构时存在局限性。

(2)深度学习:随着深度学习技术的发展,神经网络模型开始应用于自然语言处理领域。2013年,word2vec模型的提出标志着词嵌入技术的诞生。词嵌入将词汇映射为低维向量,能够捕捉词汇的语义信息。此后,循环神经网络(RNN)、长短时记忆网络(LSTM)和门控循环单元(GRU)等模型相继应用于自然语言处理任务。

(3)预训练模型:2018年,谷歌提出了BERT(Bidirectional Encoder Representations from Transformers)模型,开启了预训练模型的时代。BERT模型采用双向Transformer结构,通过预训练学习语言的深层表示。随后,各种基于Transformer的预训练模型不断涌现,如GPT、RoBERTa、XLNet等。这些模型在自然语言处理任务上取得了显著的性能提升。

4.训练方法

大型语言模型的训练方法主要包括预训练和微调两个阶段。

(1)预训练:预训练阶段旨在学习语言的通用表示。预训练任务包括语言建模、掩码语言建模、下一句预测等。在预训练过程中,模型通过学习大量文本数据,优化其参数,提高对文本数据的建模能力。

(2)微调:微调阶段针对具体任务对预训练模型进行优化。微调任务可以是文本分类、机器翻译、情感分析等。在微调过程中,模型在特定任务的数据集上进行训练,调整其参数,以适应任务需求。

5.应用场景

大型语言模型在自然语言处理领域具有广泛的应用场景,包括:

(1)文本生成:大型语言模型可以生成各种类型的文本,如新闻报道、故事、诗歌等。这些应用可以用于内容创作、智能写作等场景。

(2)文本分类:大型语言模型可以用于对文本进行分类,如情感分析、主题分类等。这些应用可以用于舆情分析、信息检索等场景。

(3)机器翻译:大型语言模型可以用于机器翻译任务,将一种语言的文本翻译为另一种语言。这些应用可以用于跨语言交流、国际化等场景。

(4)问答系统:大型语言模型可以用于构建问答系统,回答用户提出的问题。这些应用可以用于智能客服、知识查询等场景。

6.未来趋势

随着计算能力的提升和数据的积累,大型语言模型在自然语言处理领域取得了显著进展。未来,大型语言模型的发展趋势主要包括:

(1)模型规模:为了提高模型对文本数据的建模能力,未来大型语言模型的规模将继续扩大。这将需要更强的计算能力和更多的数据支持。

(2)多模态学习:大型语言模型不仅可以处理文本数据,还可以处理图像、声音等其他类型的数据。多模态学习将成为未来大型语言模型的一个重要研究方向。

(3)跨语言学习:随着全球化的发展,跨语言学习将成为大型语言模型的一个重要应用场景。模型需要在多种语言之间进行知识迁移和融合。

(4)可解释性和可靠性:随着大型语言模型在各个领域的应用,模型的可解释性和可靠性将成为一个重要研究方向。这将有助于提高模型在关键领域的应用效果。

总结:LLM它是一种基于深度学习的人工智能技术,通过大量的语料数据进行训练,能够理解和生成自然语言文本。LLM在接收到输入文本后,可以预测并生成接下来可能出现的文本内容,因此具有非常广泛的应用,如文本生成、机器翻译、智能问答、语音识别等领域。简单来说,LLM就是一种能够模拟人类语言处理能力的大型神经网络模型。总之,大型语言模型是一种强大的人工智能算法,它在自然语言处理领域具有广泛的应用。随着技术的不断发展,大型语言模型将在未来发挥更大的作用。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值