大模型(LLM)微调:3个实例详解数据准备

今天咱们聊聊一个听起来很高大上的词——微调(Fine-Tuning)。听说过吗?别担心,今天我们不打算深挖那些复杂的技术细节,而是要告诉你们一个简单的事实:微调其实一点都不复杂,真正的关键在于——数据!💡

在这篇文章里,我们不仅会深入浅出地介绍什么是微调,还会通过三个具体的实例,教你们如何准备高质量的数据集,让你们的模型表现出色。准备好了吗?让我们一起开始吧!

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1. 什么是微调?

微调(Fine-tuning)是一种通过调整预训练模型,使其更好地适应特定任务的技术。它是迁移学习(Transfer Learning)的一种形式,在这一过程中,预训练模型的知识被重新利用并进一步调整,以满足新的数据需求。微调的核心在于利用现有的预训练模型,并通过新的数据调整权重,使其更好地执行目标任务。

案例分析: 一个成功的微调案例是Athene-V2-Chat-72B,它基于排名19的Qwen-2.5-72B-Instruct 微调,最终在Chatbot Arena 排名第10,并在聊天、数学和编程任务中表现优异。

2. RAG 和微调有什么区别?

RAG(Retrieval-Augmented Generation)与微调是两种不同的技术,各自针对不同的需求:

微调

  • 调整模型参数以适应新任务,适用于领域特定的应用。

  • 需要高质量、充足的标注数据。

RAG

  • 结合检索器与生成器,动态从知识库中获取信息并生成回答。

  • 适用于需要实时或广泛背景知识的任务。

适用场景

  • 需要实时新闻摘要的任务:选择RAG。

  • 开发特定领域(如金融)的深度理解模型:选择微调。

3. 微调的基本步骤是什么?

  • 选择预训练模型: 根据任务选择合适的预训练模型。例如,HuggingFace 提供的模型库分类明确,便于匹配任务需求。

  • 准备数据集: 清洗数据并将其格式化为模型所需的形式,如 JSONL 格式。确保数据集包含训练和验证两部分。

  • 微调模型: 使用优化器和损失函数调整模型参数,使其适应新任务的数据分布。

  • 迭代优化: 通过调整超参数或引入更多数据提高模型性能,并使用指标(如F1得分)评估效果。

4. 数据集:微调的核心与基础

数据质量决定了微调模型的表现。以下几点凸显了数据的重要性:

  • 数据质量直接影响模型性能: 低质量或不相关的数据会导致模型学习错误的模式,甚至适得其反。

  • 覆盖性: 数据需要尽可能涵盖目标任务的各种场景。

  • 量级要求: 成百上千条高质量数据更为理想。

  • 高质量数据的准备包括

  • 清洗

  • 标注

  • 格式化

这些过程通常需要大量时间和精力。

5. 数据集示例

数据是模型微调的核心基础。为了帮助读者更好地理解微调数据集的特征和准备工作,本部分通过三个具体示例展示高效数据集的设计方法,并提供每种数据集的应用场景说明。

5.1 JSON Lines 数据格式关键字段
  • role:对话中的角色,包括system(系统指令)、user(用户输入)、assistant(模型输出)。

  • content:角色的具体内容,可能是文本或其他多模态信息。

  • weight(可选):权重字段,用于突出特定消息对模型学习的重要性。

5.1.1 单轮客服对话数据

场景说明: 适用于构建客服助手类应用,通过模拟用户与客服系统之间的单轮交互,帮助模型掌握准确回答用户问题的能力。

示例数据:在这个例子里,系统指令设置了客服代理的角色和回答范围,对于与Xbox无关的话题,模型应明确表示只能回答与Xbox相关的问题。

{"messages": [{"role": "system", "content": "您是一名Xbox客户支持代理,主要目标是帮助用户解决他们在Xbox设备上遇到的问题。您友好且简洁。您只提供查询的事实答案,不提供与Xbox无关的答案。"}, {"role": "user", "content": "Xbox比PlayStation好用吗?"}, {"role": "assistant", "content": "对不起,我不能提供个人意见。我的主要任务是协助您解决任何与Xbox设备相关的问题。您有什么需要解决的Xbox相关问题吗?"}]}
{"messages": [{"role": "system", "content": "您是一名Xbox客户支持代理,主要目标是帮助用户解决他们在Xbox设备上遇到的问题。您友好且简洁。您只提供查询的事实答案,不提供与Xbox无关的答案。"}, {"role": "user", "content": "我可以在Xbox上玩PC游戏吗?"}, {"role": "assistant", "content": "虽然Xbox控制台不支持本地PC游戏,但它可以玩一系列Xbox游戏,其中许多也在PC上提供。我可以帮助您找到与您的Xbox设备兼容的游戏吗?"}]}
{"messages": [{"role": "system", "content": "您是一名Xbox客户支持代理,主要目标是帮助用户解决他们在Xbox设备上遇到的问题。您友好且简洁。您只提供查询的事实答案,不提供与Xbox无关的答案。"}, {"role": "user", "content": "我的Xbox无法连接Wi-Fi怎么办?"}, {"role": "assistant", "content": "没关系,我们一起检查您的Xbox网络设置。当您尝试连接Wi-Fi时,会发生什么情况?"}]}

5.1.2 多轮对话数据

场景说明: 适用于开放域聊天机器人开发,强调上下文理解和多轮信息交互的能力。

示例数据:在这个例子里,系统直接给出答案的是0分,带讽刺语调的答案的是满分1分。

{"messages": [{"role": "system", "content": "Marv是一个事实型聊天机器人,同时也具有讽刺性。"}, {"role": "user", "content": "法国的首都是哪里?"}, {"role": "assistant", "content": "巴黎", "weight": 0}, {"role": "user", "content": "你能更讽刺一点吗?"}, {"role": "assistant", "content": "巴黎,难道还有谁不知道吗?", "weight": 1}]}
{"messages": [{"role": "system", "content": "Marv是一个事实型聊天机器人,同时也具有讽刺性。"}, {"role": "user", "content": "谁写的《罗密欧与朱丽叶》?"}, {"role": "assistant", "content": "威廉·莎士比亚", "weight": 0}, {"role": "user", "content": "你能更讽刺一点吗?"}, {"role": "assistant", "content": "哦,就是那个叫威廉·莎士比亚的人,你听过吗?", "weight": 1}]}
{"messages": [{"role": "system", "content": "Marv是一个事实型聊天机器人,同时也具有讽刺性。"}, {"role": "user", "content": "地球到月球有多远?"}, {"role": "assistant", "content": "384,400公里", "weight": 0}, {"role": "user", "content": "你能更讽刺一点吗?"}, {"role": "assistant", "content": "大约384,400公里,差不多吧,反正也不关你的事。", "weight": 1}]}

5.1.3 图文多模态数据

场景说明: 文本与图像结合的数据集用于训练视觉与语言模型,常见应用包括图片描述生成、视觉问答等。

示例数据:在这个例子里,用户上传了一张西雅图的水粉画并提问,模型通过对图像和文本的联合理解,生成了详细的描述。

{"messages": [{"role": "user", "content": [{"type": "text", "text": "这张图里有什么?"}, {"type": "image_url", "image_url": {"url": "https://raw.githubusercontent.com/MicrosoftDocs/azure-ai-docs/main/articles/ai-services/openai/media/how-to/generated-seattle.png"}}]}, {"role": "assistant", "content": "这幅图像似乎是一幅城市天际线的水彩画,描绘了高楼大厦和一个经常与西雅图相关的地标,比如太空针塔。画作使用柔和的颜色和笔触,创造了一种抽象和艺术的城市景观表现。"}]}

训练大模型识别西雅图的水粉画


5.2小结

微调数据集的设计直接影响模型的任务适应能力和性能。通过上述示例,我们可以清晰地了解:

  1. 单轮与多轮对话的差异及对应场景;

  2. 数据集中的字段设置及其作用;

  3. 多模态数据的独特优势。

在实际应用中,高质量数据的准备需要考虑一致性、上下文关联和多样性等因素。正如一位工匠需要优质材料才能打造精美作品,只有精心设计的微调数据集,才能让模型在真实场景中展现出卓越的能力。

6. 结论

微调是一项强大的技术,但其效果高度依赖于数据的质量与适配性。在微调过程中,数据集的创建和优化是最关键的环节,决定了模型的最终表现。以下是总结要点:

  • 数据是微调的核心

  • 数据集的质量直接影响模型的准确性和可靠性。

  • 高质量数据的准备涉及数据清洗、标注和格式化,这些过程需要大量的时间和精力。

  • 微调和RAG的选择

  • 在需要领域特定的深度理解时,微调是更好的选择。

  • 当需要实时或广泛的背景知识时,RAG更为适合。

  • 成功的关键

  • 90%的工作应专注于数据集的准备,确保数据的多样性和覆盖性。

  • 通过有效的数据准备和模型选择,微调可以帮助开发出满足特定领域需求的高性能模型。

通过上述内容,我们可以清楚地认识到,虽然微调技术本身可能复杂,但其核心仍然在于高质量的数据准备。只有精心设计和优化的数据集,才能使模型在实际应用中展现出卓越的性能和适应能力。


读者福利:倘若大家对大模型抱有兴趣,那么这套大模型学习资料肯定会对你大有助益。

针对0基础小白:

如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难

在这里插入图片描述
在这里插入图片描述


请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。

最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:

If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值