BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation

BiSeNet是一种用于实时语义分割的网络,它通过Spatial Path保持原始输入图像的空间大小并编码丰富的空间信息,而Context Path利用轻量级模型和全局平均池化提供大感受野。此外,Attention Refinement Module (ARM) 用于细化每个阶段的特征,以增强高层语义上下文。该网络在保持高精度的同时提高了推理速度。
摘要由CSDN通过智能技术生成

Research background 

It can be broadly applied to the fields of augmented reality devices, autonomous driving, and video surveillance. These applications have a high demand for efficient inference speed for fast interaction or response.

在现实应用中,图像分割常常需要有效的预测和快速的响应。

Recently, the algorithms of real-time semantic segmentation have shown that there are mainly three approaches to accelerate the model.

try to restrict the input size to reduce the computation complexity by cropping or resizing.

prune the channels of the network to boost the inference speed especially in the early stages of the base model.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值