整体理解Transformer的算法原理与计算流程

Transformer 与 CNN、RNN 一样属于深度学习模型。学习时将其看作是结构复杂的神经网络。

以上图片是tansformer的经典架构图。

整体包括:

模型的输入(input)和输出(output);

位置编码(PositioEncoding);

编码器-解码器结构(encoder-decoder);

多头注意力机制(Multi-head-Attention);

另外,模型中的子结构:

词向量(Embedding);

前馈神经网络(FeedForward);

残差连接(Add)和 层标准化(Norm);

线性层(Linear);

softmax层 

这些子结构也会在文中顺带提及。

模型的输入和输出:

首先明确Transformer 的输入输出是什么。包含了架构图中的Input 与outputs。

输出则为架构图顶部的Output Probabilities。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值