- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、环境
- 语言:Python3、Pytorch
- 开发环境
- 电脑系统:Windows 10
- 语言环境:Python 3.9.2
- 编译器:VS Code
- 显卡:3060
- CUDA版本:Release 11.4, V11.4.48
- 本周任务:将yolov5s网络模型中C3模块修改,并跑通YOLOv5。
二、了解common.py文件
- 该文件其实就是构建yolov5模型具体的代码
- 其中包含了基本组件及各种类(class),例如:
- 自动计算所需填充:autopad
- 卷积:Conv
- 将图像进行切片:Focus
- 组成模块:Bottleneck、C3、SPP
三、修改C3
- C3原代码:
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
- 修改后的C3:
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
# return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
return torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)
四、运行结果
五、总结
- 本周对C3的修改其实就是去掉了concat之后的一层卷积层
- 需要对YOLOV5的模型结构进行修改时,就在common.py文件中修改