信号处理基础1——傅里叶\DFT\采样\分析(涉及各人理解,对初学者很有帮助)

二郎就不设置什么VIP可见啥的了,这样大家都能看到。
如果觉得受益,可以给予一些打赏,也算对原创的一些鼓励,谢谢。

钱的用途:1)布施给他人;2)二郎会有更多空闲时间写教程

导航:

傅里叶级数和变换的区别
什么是DFT
脉冲函数以及采样
奈奎斯特准则
先滤波后采样
DFT方程理解
DFT性质(直流分量、对称性、线性、时移)
为啥要去掉直流分量

本文参考:《数字信号处理》莱昂斯

1.傅里叶级数和变换

提起傅里叶,大部分人会摸不着头脑,很正常,因为里面的参数确实有点绕。
在这里插入图片描述
傅里叶级数:周期信号→频域(离散多个正弦波)
傅里叶变换:周期无穷大信号(非周期信号)→频域(连续)
傅里叶变换是傅里叶级数的特例,傅里叶级数是把周期函数化为多个不同频率的周期函数,而傅里叶变换则是把周期取极大值,得到的结果,因此它也可以分析非周期函数(看作周期为无穷大)

2.连续傅里叶变换(非周期信号的傅里叶变换)

为什么研究非周期呢?因为在我们日常信号处理中,绝大多数是一段信号,该信号携带着具体信息,它没有明确的周期性。
在这里插入图片描述
其中x(t)为时域连续非周期函数。X(f)为函数x在频率f上的成分。其实这个公式比较像一个筛子,把x中频率为f的信号筛出来。那么这里的时间是什么意思?函数乘积在时域的积分。
你会问,这个结果会不会很大,答案是不会,因为它是非周期的,是有限的。
在这里插入图片描述
这个是DFT公式,频域的离散序列,它是一步一步来的
FT(Fourier Transform)→DTFT(Discrete time Fourier Transform)→DFT(Discrete Fourier Transform)
要想分析一个非周期信号的频域性质,需要进行傅里叶变换FT
由于我们的电脑是数字的,不能直接处理模拟信号,所以我们需要在时域进行采样(AD转换),需要进行离散时间傅里叶变换DTFT
时域的离散,到了频域则是原来频域函数的多次复制(这个后面会再详细说明一下),因此频域是连续的,我们无法直接操作,因此我们需要在频域进行采样,得到离散的频域信息,因此用到离散傅里叶变换。

离散过程:时域函数X脉冲函数。时域的乘,在频域为卷积运算。(这里为什么是这样的呢?下面详细讲解)
下图是单位脉冲序列。
在这里插入图片描述
在这里插入图片描述
脉冲序列是一种在特定位置为1,其他位置为0的信号。
设b(n)为待分析信号,c(n)为脉冲序列,则a(n)为我们最终的采样信号。

3.采样

1)假设我们有一段正弦波
在这里插入图片描述
其中f为该波的频率,单位是Hz,表示每秒振动一次或一个周期,kHz为千赫兹,MHz为兆赫兹,一百万赫兹。
2)现在我们对其进行采样,采样频率为fs,周期为1/fs=ts,也即,我们每隔ts时间,采样一个点。
在这里插入图片描述
我们采样后得到很多点,它不再是关于时间的连续函数了,而是一堆点,我们称其为序列x(n)
因此这里的n并不再像t那边代表时间,在这里只是代表序列中的序号,而nts才代表具体时间。
3)加入周期
在这里插入图片描述
在这里插入图片描述
设m=kn
在这里插入图片描述
在这里插入图片描述
到这个公式我们会发现一个问题,我们对信号x(t)采样后得到的序列x(n),的似乎能表达多个频率的信号,我们不能判断具体原信号是哪种频率。
这也是为什么在时域内的非周期信号采样后,在频域内成为了该信号的周期性重复
重复是按照nfs来进行的
在这里插入图片描述
这里有另外一个比较重要的的定义(奈奎斯特准则)。
我们原函数在频域的宽度为2B,上图来看,我们的fs/2更好大于我们的B,也就是fs更好大于2B
这样在频域,我们的信号不会重叠,如果不满足这个条件,如下图。
在这里插入图片描述
我们的频谱会出现重叠,出现假的频率(其振幅的大小不可预测),信息损坏,因此我们在时域采样后的信号不能再表示我们原来的信号了。
4)为什么滤波要在采样前
一般情况下,噪声的频率比信号的频率要大得多,从3)可以看出,我们采样后,我们的噪声也会在频域中周期性重复,如下图所示
在这里插入图片描述
因此我们在采样时,需要先滤波,再采样
这里用到了低通滤波(因为噪声频率高,所以我们只保留低频信号)
当然,有时我们也会遇到低频噪声,例如设备的持续性振荡等,这个则需要用到其他方法了。
在这里插入图片描述

4.DFT方程

在这里插入图片描述
直接看e-j……我们可能不太理解,这里采用欧拉公式展开
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面是二郎自己的理解,在课本没有找到
这里二郎的理解是n和t有关,也就是和求和号的N有关。m和频率有关,这里把频率f=1分成了N份,因此m和内部的N有关。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果我们只是研究频域的一个fs内的频谱,上边的公式f可以表示为f=fs*m/N,0<=m<=N-1,意味着我们把我们的频域fs采样了N份。我们用m代替X(f)中的f,因此后面的式子变为-j 2 pi f t=-j 2 pi fs m /N t。又因为上面的公式,x(t)变为x(n),所以t=nts,所以整个公式变为-j 2 pi fs m /N n ts。又因为fs=1/ts,所以消去,变为-j 2 pi m /N n。于是有了下面的公式。
在这里插入图片描述
这段完全是二郎自己推的,可能不对,望业内人士批评指正。

这个公式有啥用途呢?如果我们在时域采样为500点/s,那么我么的fs为500,我们在频域采样时,8点/ts,(一个周期采样8个点,N=8)。因此我们分析信号x(n)时采用的正弦波的基频为500/8,其他各个分析频率为500/82,500/83,……,500/7*2。
在这里插入图片描述
DFT的一些性质:
1)频率为0时,X(0)等于信号在时域所有采样点相加,即为不随时间变化的直流(DC)分量。
在这里插入图片描述
在信号处理中,多数情况下是需要去除直流分量的。二郎最开始的疑惑是,这不也是信号的一部分么,去除后是不是会影响到信号的表达???
网上的答案:
在模拟部分的电路中,不少元件(如放大器)输出会有直流漂移(即输出应该为零时,实际上是一个直流电压)。这个漂移会对下一级的放大等功能发生影响。所以通常在各级之间采用交流耦合(最简单的就是用一个电容隔开)。这样,信号的直流部分也就不能通过。所以在接收端,所有的直流分量都来自于系统的直流漂移,需要除掉。
二郎总结:我们用信号传递信息,主要看的是振荡,而和信号与0值距离的远近没有直接关系。当我们在传输信号时,很容易混入直流电压造成干扰,增大了信号传输时的损耗。因此去除直流分量,不会影响信号的信息,反而可以减少信号受到的干扰和传输过程中的损耗。而二郎推测,在发信号时,大家也是尽力不出现直流分量,让信号总和为0。
2)对称性
m=1和m=(N-m)的输出幅度相等。
在这里插入图片描述
3)线性
在这里插入图片描述
在这里插入图片描述
4)时移性质
在这里插入图片描述
向右移动k个样点,则乘以e……,其实就是相加,以前的1,现在变成1+k。
时移后幅度不变,只是相位发生了改变。
在这里插入图片描述
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值