Detection-friendly dehazing: object detection in real-world hazy scenes 阅读提要 (融合的观点)

研究者提出了一种名为BAD-Net的双分支联合网络,解决了恶劣天气下目标检测性能下降的问题。通过注意力融合和自监督雾鲁棒损失,该方法提高了去雾和检测的协同效果,实验证明在RTTS和VOC-haze数据集上优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**Field:图像去雾 Data:2023-10-13
Title: Detection-friendly dehazing: object detection in real-world hazy scenes
Author: Chengyang Li, Heng Zhou, Yang Liu, Caidong Yang, Yongqiang Xie
, Zhongbo Li
, Liping Zhu
Conference: PAMI 2023
**Research: context:**恶劣天气会导致深度学习模型的检测性能下降。常用应对方案是在目标检测之前使用图像恢复对退化图像进行增强。然而,如何在恢复和检测这两项任务之间建立正相关关系有难度,因为恢复模块可能给检测模块带来有害噪声,类似于图像对抗攻击的原理。本文提出了一种将除雾模块和检测模块有效结合的双分支关注联合网络(BAD-Net)。为了使整个模型稳定收敛,本文将以往方法中的单分支串行结构改为双分支并行结构。在此基础上,又设计了一个注意力融合模块,充分融合除雾和有雾的特征。增强了目标特征的互补性,便于后续目标检测。此外,引入自监督的雾鲁棒损失来指导去雾模块的特征学习。它约束了从检测主干提取的去雾图像的目标特征与有雾图像的目标特征相似。从而提高了检测模块的鲁棒性。此外,我们还提出了一种区间迭代训练策略,以进一步指导除雾模块的学习。训练输入数据在原始数据集和改进数据集之间以一个epoch进行转换。改进后的雾霾数据集是通过在前一epoch训练的去雾模块输出的去雾图像上添加雾而形成的。

主要贡献:

本文探索了如何在没有清晰图像标签的情况下建立低级去雾和高级检测之间的正向相关性。
本文提出了一个双线性联合架构,即BAD-Net,以及一种区间迭代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值