以下是 n8n 与 Dify 的核心区别对比,从功能定位、技术实现、适用场景等维度进行综合分析:
一、核心定位差异
维度 | n8n | Dify |
---|---|---|
核心目标 | 通用工作流自动化,连接多系统数据流转 | AI原生应用开发,基于大语言模型(LLM)构建智能应用 |
设计理念 | “数字世界的连接器”,通过节点拼接实现流程自动化 | “AI外挂大脑”,通过LLM赋予系统智能决策能力 |
用户群体 | 开发者、技术团队(需API/编程基础) | 业务人员、非技术用户(低代码/无代码) |
关键区别:
- n8n 以流程自动化为核心,擅长跨系统集成(如ERP与物流系统联动),目标是“让系统协作更高效”。
- Dify 以AI驱动为核心,通过大模型(如GPT)实现智能问答、内容生成等任务,目标是“让系统具备思考能力”。
二、核心技术对比
特性 | n8n | Dify |
---|---|---|
核心技术 | Node.js + REST API,支持400+应用节点 | 深度集成LLM(如GPT、DeepSeek),支持RAG(检索增强生成) |
自定义能力 | 支持JavaScript/Python扩展逻辑 | 低代码配置提示词(Prompt)和知识库管理 |
AI集成方式 | 需通过第三方节点(如OpenAI API) | 原生支持多模型切换,内置AI工作流引擎 |
数据处理 | 数据清洗、格式转换、多源聚合 | 依赖LLM生成内容,内置语义优化与知识库检索 |
关键区别:
- n8n 的灵活性更高,适合需要复杂数据处理和API串联的场景(如电商订单同步)。
- Dify 在AI原生能力上更突出,例如一键上传企业文档构建知识库问答系统,开发效率提升90%。
三、适用场景对比
n8n 适用场景
- 跨系统自动化:
- 示例:零售企业通过n8n打通ERP、物流和POS系统,缺货率下降35%。
- 功能:定时任务、数据清洗、API串联。
- IT运维自动化:
- 示例:服务器日志异常监控,故障响应时间从2小时缩短至15分钟。
- 传统业务自动化:
- 如订单处理、库存同步、邮件通知等。
Dify 适用场景
- AI驱动应用开发:
- 示例:跨境电商3天内搭建7国语言客服机器人,人力成本下降50%。
- 功能:智能问答、合同审查、个性化推荐。
- 知识库智能检索:
- 示例:律所合同审查机器人,风险条款识别准确率达95%。
- 内容生成工具:
- 如营销文案、代码生成、多语言翻译。
四、成本与部署差异
维度 | n8n | Dify |
---|---|---|
部署方式 | 支持自托管(Docker/K8s),数据完全可控 | 云端为主,支持自托管但需配置模型接口 |
成本模型 | 开源版免费,企业版按执行次数付费 | 依赖第三方模型费用(如OpenAI API调用) |
合规性 | 金融、医疗行业首选(数据不出内网) | 需注意敏感数据加密与模型调用成本控制 |
关键区别:
- n8n 适合预算有限且需数据隐私的企业,自托管零成本。
- Dify 的模型调用费用可能较高,适合短期快速验证AI需求。
五、用户学习门槛
维度 | n8n | Dify |
---|---|---|
技术基础 | 需理解API调试与基础编程逻辑 | 无需编码,通过配置提示词即可完成开发 |
学习曲线 | 较陡(需3-5天掌握节点逻辑) | 较平缓(非技术用户1天内可上手) |
社区支持 | 开源社区活跃(GitHub 70k+星标) | 中文文档完善,案例聚焦AI场景 |
关键区别:
- n8n 更适合开发者或技术团队。
- Dify 对业务部门更友好,降低对开发资源的依赖。
六、互补使用建议
两者可结合形成“AI+自动化”闭环:
- AI决策层:用Dify处理语义理解、内容生成(如客服回答生成)。
- 执行层:用n8n触发后续动作(如将回答同步至工单系统)。
案例:保险公司通过Dify生成核保结论,n8n同步至财务系统,全流程效率提升50%。
总结
- 选择n8n:若需求围绕复杂自动化(数据同步、API串联)或需自托管数据安全。
- 选择Dify:若目标为快速开发AI应用(如智能客服、内容生成)且接受模型调用成本。
- 组合使用:在端到端智能流程中,发挥Dify的AI决策与n8n的执行能力。