YOLOV5代码精读之导出格式的介绍

YOLOv5中的export.py脚本是一个功能强大的工具,它允许用户将训练好的PyTorch模型(.pt格式)转换为多种不同的格式,以便在不同的平台或框架上进行推理。

一、导出格式简介

1.1 PyTorch

  • 提出背景及时间

    • 由Facebook人工智能研究院(FAIR)于2016年发布,由Adam Paszke、Sam Gross和Soumith Chintala等人共同开发出这一框架的初始版本。
    • 2017年1月,FAIR向世界推出了PyTorch。
  • 主要贡献

    • 实现了自动微分功能,并引入动态计算图,使模型建立更加灵活。
    • 提供了以Python为核心的前端接口,使得深度学习模型的构建和训练更加便捷。
    • 强大的GPU加速张量计算能力,其并行计算能力在当时与NumPy相媲美。
    • 内置的自动微分系统,使得构建深度神经网络变得更加直观和高效。
  • 优缺点

    • 优点:灵活性强,支持动态图,易于调试和构建模型。
    • 缺点&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值