无损压缩算法之哥伦布编码

哥伦布编码(Golomb coding),也称为哥伦布码,是一种无损的数据压缩方法,由数学家Solomon W. Golomb在1960年代提出。它主要用于对整数进行编码,特别是当整数的出现概率符合几何分布时,哥伦布编码可以取得最优效果。以下是对哥伦布编码的详细介绍:

一、基本原理

哥伦布编码基于这样一个假设:整数越大,其出现概率越低。因此,它使用较短的码长编码较小的数字,而使用较长的码长编码较大的数字。哥伦布编码是一种分组编码,它需要一个正整数参数m,用m对待编码的数字n进行求商q和余r的操作(q=n//m,r=n%m),然后对商q进行一元编码,对余r进行固定长度的二进制编码。

二、编码过程

  1. 一元编码:对商q进行一元编码,即编码成q个“1”后接一个“0”的形式。例如,如果q=2,则一元编码为“110”;如果q=3,则一元编码为“1110”。
  2. 固定长度编码:对余数r进行固定长度的二进制编码。这个长度通常是根据参数m来确定的,可以是m的二进制表示的位数,或者是其他与m相关的固定长度。
  3. 拼接:将一元编码和固定长度编码拼接起来,形成最终的哥伦布编码。

三、变种与改进

3.1、哥伦布-莱斯编码(Golomb-Rice coding)

哥伦布-莱斯编码(Golomb-Rice coding)是哥伦布编码(Golomb coding)的一个变种,由数学家Solomon W. Golomb提出,并由Robert F. Rice进一步改良。以下是对哥伦布-莱斯编码的详细介绍:

3.1.1、基本原理

哥伦布-莱斯编码仍然基于哥伦布编码的基本原理,即对整数进行分组编码。它使用一个正整数参数m(且m必须是2的次幂),将待编码的数字n分为商q和余r两部分。然后,对商q进行一元编码,对余r进行固定长度的二进制编码。

3.1.2、编码过程

  1. 参数初始化:确定参数m,且m必须为2的次幂,例如m=2^k,k为非负整数。

  2. 求商和余:对于待编码的数字n,计算商q和余r。其中,q=n//m(整数除法),r=n%m(取余操作)。由于m是2的次幂,因此计算r可以简化为r=n&(m-1)(位运算)。

  3. 一元编码:对商q进行一元编码,即编码成q个“1”后接一个“0”的形式。

  4. 固定长度编码:对余数r进行固定长度的二进制编码。这个长度是log2(m)位,因为m是2的次幂,所以r的二进制表示不会超过log2(m)位。

  5. 拼接:将一元编码和固定长度编码拼接起来,形成最终的哥伦布-莱斯编码。

3.1.3、优点

  1. 高压缩率:对于符合几何分布的整数数据,哥伦布-莱斯编码能够提供较高的压缩率。

  2. 易于实现:由于m是2的次幂,因此计算余r可以简化为位运算,使得编码过程更加高效和易于实现。

  3. 无损压缩:哥伦布-莱斯编码是一种无损压缩方法,能够完全恢复原始数据而不引起任何失真。

3.1.4、应用领域

哥伦布-莱斯编码在数据压缩领域有广泛的应用,特别是在需要高压缩率且对错误不太敏感的场景中。它常被用于无损影像压缩、视频编码(如H.264等视频编码标准中的某些部分)等领域。此外,哥伦布-莱斯编码还可以用于图像处理、音频压缩以及任何需要高效编码整数的场景。

综上所述,哥伦布-莱斯编码是一种高效的无损数据压缩方法,特别适用于编码具有几何分布特性的数值。在实际应用中,需要根据具体的数据类型和压缩需求选择合适的参数m以获得最佳的压缩效果。

3.2、指数哥伦布编码(Exponential Golomb coding)

指数哥伦布编码(Exponential Golomb coding),也被称为指数哥伦布码或Exp-Golomb编码,是一种在音视频编码标准中经常采用的可变长编码方法。以下是对指数哥伦布编码的详细介绍:

3.2.1、基本原理

指数哥伦布编码是一种无损数据压缩方法,它利用数学中的指数函数和对数函数来对数据进行编码。该方法将所有数字分为等大小不同的组,符号值较小的组分配的码长较短,同一组内符号长基本相等,并且组的大小呈指数增长。这种编码方式能够有效地对原始数据进行压缩,并且能很容易地把编码后的码流分离成码字。

3.2.2、编码结构

指数哥伦布码的比特串分为“前缀”(prefix)和“后缀”(suffix)两个部分。其逻辑结构为:[Mzero][1][INFO],编码后码长为2M + 1 + k,其中M为前缀长度(即0的个数),1为中间的1长度,M+k为后缀长度,k为信息位长度。

3.2.3、编码过程

  1. 确定前缀长度M:根据待编码的数字n和编码参数k,计算出前缀中0的个数M。这通常涉及到对数运算和取整操作。

  2. 构造前缀:在编码的比特串前添加M个0。

  3. 添加中间位:在前缀后添加一个1,作为前缀和后缀的分隔符。

  4. 确定后缀:根据待编码的数字n和前缀长度M,计算出后缀的二进制表示。这通常涉及到对n进行一定的数学变换,然后取其二进制表示的低位部分。

  5. 拼接码字:将前缀、中间位和后缀拼接起来,形成最终的指数哥伦布编码码字。

3.2.4、解码过程

解码过程是编码过程的逆过程,主要包括以下步骤:

  1. 读取前缀:从编码的比特串中读取连续的0,直到遇到1为止。0的个数即为前缀长度M。

  2. 读取后缀:根据前缀长度M和编码参数k,确定后缀的长度,并从编码的比特串中读取相应的二进制位作为后缀。

  3. 恢复原始数字:根据前缀长度M和后缀的二进制表示,通过一定的数学变换恢复出原始的待编码数字n。

3.2.5、应用领域

指数哥伦布编码在信息传输、数据压缩、压缩存储等领域都有广泛的应用。特别是在音视频编码标准中,如H.264等,指数哥伦布编码被用于对量化后的系数、运动矢量等数据进行编码。此外,它还可以用于图像处理、音频压缩以及任何需要高效编码整数的场景。

3.2.6、优点与特点

  1. 高压缩率:指数哥伦布编码能够根据数据的统计特性进行动态调整,从而实现较高的压缩率。

  2. 自适应性:编码长度能够根据数据点在区间中的位置动态调整,适用于不同数据点的压缩和编码。

  3. 无需事先建立码表:与某些其他编码方法相比,指数哥伦布编码无需事先建立和存储码表,从而简化了编码过程。

  4. 硬件实现简单:指数哥伦布编码的硬件实现相对简单,可以通过硬件计算快速产生码字。

综上所述,指数哥伦布编码是一种高效、自适应的无损数据压缩方法,在音视频编码、图像处理、音频压缩等领域有着广泛的应用。

四、应用领域

哥伦布编码在数据压缩领域有广泛的应用,特别是在需要高压缩率且对错误不太敏感的场景中。它常被用于无损影像压缩、视频编码(如H.264中的0阶指数哥伦布编码)等领域。此外,哥伦布编码还可以用于图像处理、音频压缩以及任何需要高效编码整数的场景。

五、优缺点

  1. 优点
    • 无损压缩:能够完全恢复原始数据而不引起任何失真。
    • 高压缩率:对于符合几何分布的整数数据,哥伦布编码能够提供较高的压缩率。
    • 易于实现:哥伦布编码的算法相对简单,易于在软件和硬件中实现。
  2. 缺点
    • 对错误敏感:如果编码或解码过程中出现错误,可能会导致整个消息的译码错误。
    • 解码延迟:由于需要等待完整的编码数据才能开始解码,因此存在一定的解码延迟。

综上所述,哥伦布编码是一种高效的无损数据压缩方法,特别适用于编码具有几何分布特性的数值。在实际应用中,需要根据具体的数据类型和压缩需求选择合适的哥伦布编码变种或参数设置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值