结构化剪枝(Structured Prsing)是一种通过移除神经网络中的 结构化单元(如通道、滤波器、层或分支)来减少模型复杂度的压缩方法。与非结构化剪枝(移除单个权重)不同,结构化剪枝直接改变模型架构,使其更适配硬件加速,尤其适合实时推理场景(如目标检测、图像分类)。以下是其核心原理、方法及实践的详细分析:
一、核心原理与流程
-
定义与特点
- 结构化单元:剪枝的最小单位是 通道(Channel)、滤波器(Filter)、层(Layer)或模块(Block),而非单个权重。例如,移除卷积层的某个输出通道或整个残差块。
- 硬件友好性:剪枝后的模型仍保持密集计算结构,可直接利用常规硬件(如GPU、NPU)的并行计算能力,无需依赖稀疏计算库(如cuSPARSE)。
-
核心流程
- 预训练模型:在完整数据集上训练至收敛&