结构化剪枝技术解析

结构化剪枝(Structured Prsing)是一种通过移除神经网络中的 ​结构化单元​(如通道、滤波器、层或分支)来减少模型复杂度的压缩方法。与非结构化剪枝(移除单个权重)不同,结构化剪枝直接改变模型架构,使其更适配硬件加速,尤其适合实时推理场景(如目标检测、图像分类)。以下是其核心原理、方法及实践的详细分析:


一、核心原理与流程
  1. 定义与特点

    • 结构化单元:剪枝的最小单位是 ​通道(Channel)、滤波器(Filter)、层(Layer)或模块(Block)​,而非单个权重。例如,移除卷积层的某个输出通道或整个残差块。
    • 硬件友好性:剪枝后的模型仍保持密集计算结构,可直接利用常规硬件(如GPU、NPU)的并行计算能力,无需依赖稀疏计算库(如cuSPARSE)。
  2. 核心流程

    • 预训练模型:在完整数据集上训练至收敛&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值