模型计算效率是衡量深度学习模型在资源消耗与性能表现之间平衡的关键指标,其核心影响因素包括计算复杂度(FLOPs)、内存访问成本(MAC)、硬件并行度以及算法与硬件协同优化。以下是具体分析及优化方法:
一、计算复杂度(FLOPs)与内存访问成本(MAC)
-
FLOPs(浮点运算次数)
FLOPs表示模型执行所需的浮点运算总量,直接影响计算密集程度。例如,大矩阵乘法(如1000×1000矩阵相乘)的FLOPs高达2×10^9,属于计算密集型操作,其速度主要由硬件算力(如GPU的FLOPS)决定。- 优化方法:
- 使用轻量级网络架构(如MobileNet、ShuffleNet)减少参数量和计算量;
- 应用Winograd等高效卷积算法,降低单次运算的FLOPs。
- 优化方法:
-
MAC(内存访问成本)
MAC衡量模型对内存的读写开销,尤