CIoU Loss 是目标检测中用于边界框回归的高级损失函数,在DIoU的基础上进一步引入长宽比惩罚项,联合优化重叠面积、中心点距离和形状差异,显著提升定位精度。以下是其详细解析:
1. CIoU的公式与原理
2. 为什么需要CIoU Loss?
DIoU的局限性:
- 忽略形状差异:当中心点重合但宽高比不同时,DIoU无法有效优化(如预测框为正方形,真实框为长方形)。
CIoU的改进:
- 联合优化三要素:
- 重叠面积(IoU):保证整体覆盖。
- 中心点距离:加速收敛。
- 长宽比一致性: