补习一下目标检测!

补习一下目标检测!

知识结构图:

一、目标检测原理

1.目标检测定义以及对比:

输出:框、类别、置信度

(a)分类 (b)目标检测 (c)语义分割 (d)实例分割

(分割的话精确到像素级别)

2.传统方法(左)VS深度学习方法(右)

传统方法

手动特征提取(生成特征);滑动窗口生成候选框

深度学习方法

(二阶段)提取特征使用CNN;候选框使用RPN;

(单阶段)直接回归得到框的位置和类别

3.目标检测流程:

4.一阶段VS二阶段:

 

二、传统目标检测

1.V-J算法(Viola-Jones)

Haar特征抽取

(纹理特征:白-黑)

Adaboost算法:

2.HOG+SVM算法(行人检测,open-cv实现)

HOG特征:

SVM(支持向量机)

3.DPM(传统目标检测的巅峰之作)

4.NMS(非极大抑制算法)是什么?

 

三、深度学习two-stage算法

1.CNN结构:

2.RPN结构:

 

四、深度学习one-stage算法(没有RPN)

1.CNN结构:

2.回归结构:

 

五、SSD系列

1.SSD

(1)backbone:VGGNet,后面的全连接换成卷积。

为什么?参数共享,便于计算。

 

(2)多尺度特征提取:

结果作为检测层的输入。

(3)Default bounding boxes的类别分数、偏移量

(4)损失函数:

2.DSSD and DSOD

3.FSSD and RDSSD

 

六、Yolo系列 and RCNN系列

SSD(Single Shot MultiBox Detector),平衡了YOLO和Faster RCNN的优缺点的模型。

Faster R-CNN准确率mAP较高,漏检率recall较低,但速度较慢。

而yolo则相反,速度快,但准确率和漏检率较低。

 SSDYOLOv3
LOSSSoftmax lossLogistic loss
特征提取VGG19Darknet-53
Bounding Box Predictiondirect offset with default boxoffset with gird cell by sigmoid activation
Anchor boxDifferent scale and aspect ratioK-means from coco and VOC
Small objects不好较好
Big objectsBetter.   Worse.
Data AugmentationDifferent sample IOU cropRandom Scale from 0.25 to 2
InputOriginal imageRandom multi-scale input

 

 

 

 

 

 

 

 

 

 

 

 

七、人脸检测+关键点定位(MTCNN)多任务网络模型 

多任务网络

优势:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值