MIT Cheetha(一)

声明:本文仅作为自己学习笔记,如有侵权,请联系删除。

MIT猎豹在2019年末开源,提供了一个基于MPC的线性化模型预测控制框架,其核心是将四足机器人简化为单刚体后构建一个多点支撑的力平衡模型,并通过MPC的控制理论在线性化假设下采用QP优化来求解,实现在低成本嵌入式处理器上实时运算。基于MPC框架大大简化了四足机器人步态状态机的设计,在MIT原始步态规划中仅采用时间开环相序就可以实现不同的步态,而传统的方法则需要设计完善的状态机进行切换,另外由于MPC是以实现对轨迹跟踪为目标,因此可以考虑未来一段时间内系统支撑情况的变换提前控制,这样处理机器人腾空相有非常大的好处,而传统的方法例如我之前复现Cheetha3的Bound需要人工规划前馈力矩其调参困难而且严重依赖步态相序周期切换的稳定性。

在2020年MIT又进一步增加了WBC实现了更快速度、更流畅优化的四足机器人奔跑,并且开始构建一个双足机器人。

与Cheetah 2完全依赖MPC的控制策略不同,Cheetah 3与mini Cheetah首先利用MPC求出机器人当前最佳受力(即地面对机器人产生的弹力),这一过程由于计算复杂度的原因耗时较长,然后利用WBC从得到的地面反作用力,计算出多任务优先级不同情况下机器人各关节扭矩、位置和速度。

为了将MPC过程得到的最优地面反作用力与WBC全身控制算法结合,文章使用了Whole Body Impulse Control(WBIC)控制策略,这种控制方式与现有的全身控制策略并无太大差异,主要的特点是该策略针对四足机器人的浮动基特征下,利用受到地面反作用力进行全身关节控制,而不是传统WBC中利用当前位姿进行全身控制。

WBC与MPC结合进行凸优化的效果优于一般的MPC控制策略,有效避免了陷入局部极小的困境。

VMC&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值