引言
在现代机器学习和AI应用中,处理和搜索大规模数据集的需求不断增加。Google Vertex AI Vector Search是一种领先的低延迟高扩展性向量数据库,适用于向量相似性匹配或近似最近邻(ANN)服务。本指南将详细介绍如何使用Google Vertex AI Vector Search,从创建索引到执行向量搜索。
主要内容
创建索引并部署到端点
在开始之前,确保你已经设置了相关的项目和存储桶:
# 设置项目和存储常量
PROJECT_ID = "<my_project_id>"
REGION = "<my_region>"
BUCKET = "<my_gcs_bucket>"
BUCKET_URI = f"gs://{
BUCKET}"
DIMENSIONS = 768
DISPLAY_NAME = "<my_matching_engine_index_id>"
DEPLOYED_INDEX_ID = "<my_matching_engine_endpoint_id>"
# 创建存储桶
! gsutil mb -l $REGION -p $PROJECT_ID $BUCKET_URI
使用VertexAIEmbeddings作为嵌入模型
from google.cloud import aiplatform
from langchain_google_vertexai import VertexAIEmbeddings
aiplatform.init(project=PROJECT_ID, location=REGION, staging_bucket=BUCKET_URI)
embedding_model