[深入探索Google Vertex AI Vector Search:高效的向量数据库应用指南]

引言

在现代机器学习和AI应用中,处理和搜索大规模数据集的需求不断增加。Google Vertex AI Vector Search是一种领先的低延迟高扩展性向量数据库,适用于向量相似性匹配或近似最近邻(ANN)服务。本指南将详细介绍如何使用Google Vertex AI Vector Search,从创建索引到执行向量搜索。

主要内容

创建索引并部署到端点

在开始之前,确保你已经设置了相关的项目和存储桶:

# 设置项目和存储常量
PROJECT_ID = "<my_project_id>"
REGION = "<my_region>"
BUCKET = "<my_gcs_bucket>"
BUCKET_URI = f"gs://{
     BUCKET}"

DIMENSIONS = 768
DISPLAY_NAME = "<my_matching_engine_index_id>"
DEPLOYED_INDEX_ID = "<my_matching_engine_endpoint_id>"

# 创建存储桶
! gsutil mb -l $REGION -p $PROJECT_ID $BUCKET_URI

使用VertexAIEmbeddings作为嵌入模型

from google.cloud import aiplatform
from langchain_google_vertexai import VertexAIEmbeddings

aiplatform.init(project=PROJECT_ID, location=REGION, staging_bucket=BUCKET_URI)
embedding_model 
### Vertex AI API 使用文档和示例 #### 调用 Vertex AI Embedding API 进行文本嵌入 为了使用 Vertex AI 的文本嵌入功能,可以通过调用 `perform inference API` 来实现。具体来说,可以发送 HTTP POST 请求到指定的端点来获取给定文本的嵌入向量表示[^4]。 ```json POST /_inference/text_embedding/google_vertex_ai_embedding { "input": "This text will be embedded" } ``` 此请求会返回一个 JSON 响应,其中包含了输入文本对应的高维向量形式。这种向量可用于多种自然语言处理任务,比如语义相似度计算、分类等[^2]。 #### 利用 Google Gemini API 和 Vertex AI 构建智能应用 对于希望创建更复杂的人工智能解决方案的应用程序开发者而言,Google 提供了 Gemini API 及其 Vertex AI 平台作为强有力的支撑工具。这些服务允许用户快速搭建起具备高级机器学习能力的应用实例,并提供了一系列易于使用的接口和支持材料[^3]。 例如,在 Python 中集成上述提到的服务可能如下所示: ```python from google.cloud import aiplatform as vertexai def get_text_embedding(text: str): client_options = {"api_endpoint": "us-central1-aiplatform.googleapis.com"} endpoint = vertexai.Endpoint( project="your-project-id", location="us-central1", credentials=vertexai.auth.credentials.Credentials.from_service_account_file('path/to/credentials.json'), client_options=client_options, ) response = endpoint.predict(instances=[{"input": text}]) embedding_vector = response.predictions[0]['embedding'] return embedding_vector ``` 这段代码展示了如何设置客户端选项并定义预测函数以接收字符串参数,进而获得该字符串经过预训练模型转换后的特征向量表达方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值