本地运行大型AI语言模型的实用指南:Ollama与LangChain集成

引言

在AI和编程的快速发展中,能够本地运行大型语言模型(LLMs)提供了巨大的灵活性和控制优势。Ollama提供了一个强大的解决方案,允许开发者在本地设备上运行如Llama 2这样的开源LLMs。本篇文章将介绍如何利用Ollama和LangChain集成,轻松地在本地设置和运行这些模型。

主要内容

Ollama概览

Ollama提供了一个简单的方式,将模型权重、配置和数据打包成一个Modelfile,优化了GPU的使用和配置。此外,Ollama还支持多种模型变体,方便不同需求的开发者进行选择。

环境配置

  1. 下载并安装Ollama,支持的平台包括Windows Subsystem for Linux。
  2. 使用命令ollama pull <name-of-model>获取可用的LLM模型,例如ollama pull llama3
  3. 使用ollama list查看已下载的模型,ollama run <name-of-model>直接在命令行中与模型交互。

LangChain Ollama集成

通过LangChain Ollama集成,用户可以更方便地调用LLM功能:

%pip install -qU langchain
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值