引言
在AI和编程的快速发展中,能够本地运行大型语言模型(LLMs)提供了巨大的灵活性和控制优势。Ollama提供了一个强大的解决方案,允许开发者在本地设备上运行如Llama 2这样的开源LLMs。本篇文章将介绍如何利用Ollama和LangChain集成,轻松地在本地设置和运行这些模型。
主要内容
Ollama概览
Ollama提供了一个简单的方式,将模型权重、配置和数据打包成一个Modelfile,优化了GPU的使用和配置。此外,Ollama还支持多种模型变体,方便不同需求的开发者进行选择。
环境配置
- 下载并安装Ollama,支持的平台包括Windows Subsystem for Linux。
- 使用命令
ollama pull <name-of-model>
获取可用的LLM模型,例如ollama pull llama3
。 - 使用
ollama list
查看已下载的模型,ollama run <name-of-model>
直接在命令行中与模型交互。
LangChain Ollama集成
通过LangChain Ollama集成,用户可以更方便地调用LLM功能:
%pip install -qU langchain