基于加权黑猩猩优化算法的参数优化
加权黑猩猩优化算法(WChOA)是一种新型的自适应参数优化算法。本文将介绍该算法的原理,并提供附带Matlab代码的实现示例。
WChOA算法的核心思想是模拟黑猩猩社会的行为方式以及其社会结构和等级制度,通过一系列基于加权平均值和等级制度的运算,从而得到最佳的参数配置。在WChOA算法中,每个黑猩猩个体都有其自己的等级和权重。等级越高的黑猩猩,其权重也就越大,对参数优化的贡献也就越大。
以下是一个简单的WChOA算法实现示例,使用Matlab语言编写:
% 初始化种群
popSize = 50; % 种群大小
minLim = [0.1, 0.1, 0.1, 0.01]; % 参数下限
maxLim = [0.9, 0.9, 0.9, 0.99]; % 参数上限
pop = repmat(minLim,popSize,1) + rand(popSize,length(minLim)).*(repmat(maxLim - minLim,popSize,1));
% 初始化黑猩猩等级和权重
rank = randperm(popSize)+1;
weight = 1./rank';
% 迭代寻优
maxIter = 100; % 迭代次数
bestFit = inf; % 最佳适应度初始值为无穷大
for i=1:maxIter
% 计算种群适应度
fit = costFunction(pop);