Formula Derivation

在这里插入图片描述
Known:    b ⃗  is projected onto the vector  a ⃗  to form a projection  p ⃗ . p ⃗ = x a ⃗ , where x is a expansion coefficient and x is a scalar.  e ⃗ = b ⃗ − p ⃗ , where e is a error. 证明:1.将向量投影到向量 a ⃗ ∵    a ⃗ ⊥ e ⃗ ∴    a ⃗ T ( b ⃗ − p ⃗ ) = 0 ⇒ a ⃗ T ( b ⃗ − x a ⃗ ) = 0 ⇒ a ⃗ T b ⃗ − x a ⃗ T a ⃗ = 0 ⃗ ∴    x a ⃗ T a ⃗ = a ⃗ T b ⃗ ∴    x = a ⃗ T b ⃗ a ⃗ T a ⃗ ( x is a scalar and   a ⃗ T a ⃗  is a number. ) ∵    p = x a ⃗ = a ⃗ x ∴    p = a ⃗ x = a ⃗ a ⃗ T b ⃗ a ⃗ T a ⃗ ⇒ p = a ⃗ a ⃗ T a ⃗ T a ⃗ ⏟ p r o j e c t i o n b ⃗ ⇒ p r o j e c t i o n    p = p ⃗ × b ⃗ 证明:2.推广:将向量投影到平面 A ⃗ ∵    p ⃗ = x 1 ^ a 1 + x 2 ^ a 2 = [ a 1    a 2 ] [ x 1 x 2 ] = A ⃗ X ^ ;    b ⃗ − A ⃗ X ^ ⊥ p l a n e    A ; ∴    [ a 1 T a 2 T ] ( b − A ⃗ x ^ ) = 0 ⃗    ⇒ A ⃗ T ( b ⃗ − A ⃗ X ^ ) = 0 ⃗ ⇒ A ⃗ T A ⃗ X ^ = A ⃗ T b ⃗ ( e ⃗ = b ⃗ − A ⃗ X ^ , e ⃗ 位 于 A 转 置 的 零 空 间 ) ∵    e ⊥ C ( A ) ( Column space of A ) ∴    如果A为一维向量且定义为a,则 A T A 为一个数。 ∴    A ⃗ T A ⃗ X ^ = A ⃗ T b ⃗ ⇒ X ^ = ( A ⃗ T A ⃗ ) − 1 A ⃗ T b ⃗ ⇒ P ⃗ = A ⃗ X ^ = A ⃗ ( A ⃗ T A ⃗ ) − 1 A T ⏟ P r o j e c t i o n    m a t r i x b \begin{aligned} \text{Known: } \ \ &\vec{b} \text{ is projected onto the vector } \vec{a} \text{ to form a projection } \vec{p}. \\ & \vec{p}=x \vec{a},\text{where x is a expansion coefficient and x is a scalar. } \\ & \vec{e}=\vec{b}-\vec{p},\text{where e is a error.} \\ &\text{证明:1.将向量投影到向量} \vec{a} \\ \because \ \ & \vec{a} \perp \vec{e} \\ \therefore \ \ & \vec{a}^T(\vec{b}-\vec{p})=0 \Rightarrow \vec{a}^T(\vec{b}-x\vec{a})=0 \Rightarrow \vec{a}^T\vec{b}-x\vec{a}^T\vec{a}=\vec{0} \\ \therefore \ \ & x\vec{a}^T\vec{a}=\vec{a}^T\vec{b} \\ \therefore \ \ & x=\frac{\vec{a}^T\vec{b}}{\vec{a}^T\vec{a}}(\text{x is a scalar and} \ \ \vec{a}^T\vec{a}\text{ is a number.}) \\ \because \ \ & p=x\vec{a}=\vec{a}x \\ \therefore \ \ & p=\vec{a}x= \vec{a}\frac{\vec{a}^T\vec{b}}{\vec{a}^T\vec{a}} \Rightarrow p=\underbrace{\boxed{\frac{\vec{a}\vec{a}^T}{\vec{a}^T\vec{a}}}}_{projection}\vec{b} \Rightarrow projection \ \ p = \vec{p} \times \vec{b} \\ &\text{证明:2.推广:将向量投影到平面} \vec{A} \\ \because \ \ & \vec{p}=\hat{x_1}a_1+\hat{x_2}a_2 = \left[\begin{array} {c} a_1 \ \ a_2 \end{array}\right] \left[\begin{array} {c} x_1 \\ x_2 \end{array}\right ]={\vec{A}}\hat{X};\\ \ \ & \boxed{ \vec{b}-{\vec{A}}\hat{X} } \perp \boxed{plane \ \ A} ; \\ \therefore \ \ & \left[\begin{array} {c} a_1^T \\ a_2^T \end{array}\right](b-\vec{A}\hat{x})=\vec{0} \\ \ \ & \Rightarrow \vec{A}^T(\vec{b}-\vec{A}\hat{X})=\vec{0}\Rightarrow \vec{A}^T\vec{A}\hat{X}=\vec{A}^T\vec{b}(\vec{e}=\vec{b}-\vec{A}\hat{X},\vec{e}位于A转置的零空间)\\ \because \ \ & e \perp C(A) (\text{Column space of A}) \\ \therefore \ \ & \text{如果A为一维向量且定义为a,则} A^TA \text{为一个数。} \\ \therefore \ \ & \vec{A}^T\vec{A}\hat{X}=\vec{A}^T\vec{b} \Rightarrow \hat{X}=(\vec{A}^T\vec{A})^{-1}\vec{A}^T\vec{b} \Rightarrow \vec{P}=\vec{A}\hat{X}=\underbrace{\boxed{\vec{A}(\vec{A}^T\vec{A})^{-1}A^T}}_{Projection \ \ matrix}b \end{aligned} Known:                             b  is projected onto the vector a  to form a projection p .p =xa ,where x is a expansion coefficient and x is a scalar. e =b p ,where e is a error.证明:1.将向量投影到向量a a e a T(b p )=0a T(b xa )=0a Tb xa Ta =0 xa Ta =a Tb x=a Ta a Tb (x is a scalar and  a Ta  is a number.)p=xa =a xp=a x=a a Ta a Tb p=projection a Ta a a Tb projection  p=p ×b 证明:2.推广:将向量投影到平面A p =x1^a1+x2^a2=[a1  a2][x1x2]=A X^;b A X^plane  A;[a1Ta2T](bA x^)=0 A T(b A X^)=0 A TA X^=A Tb (e =b A X^,e A)eC(A)(Column space of A)如果A为一维向量且定义为a,ATA为一个数。A TA X^=A Tb X^=(A TA )1A Tb P =A X^=Projection  matrix A (A TA )1ATb

key 1 : A一定是方阵,所以不存在 A − 1 A^{-1} A1

key 2 : 投影矩阵是对称矩阵。 ⇒ \Rightarrow P T = P , P 2 = P P^T=P,P^2=P PT=P,P2=P

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值