计算协方差矩阵中的XX^{T}和X^T{T}的区别

本文探讨了在数据处理中,当$m << n$时,矩阵$X$的转置乘以其自身$A=XTX$和$X$乘以其转置$B=XXT$的性质。尽管$A$和$B$的维度不同,但它们都是对称半正定矩阵,并且具有相同的秩。$A$有$n$个特征向量,$B$有$m$个特征向量,这在数据压缩和特征选择中有重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设 X ∈ R m × n X \in \R^{m \times n} XRm×n,通常在数据降维过程中m<<n
A = X T X A=X^TX A=XTX B = X X T B=XX^T B=XXT,显然 A ∈ R n × n A \in \R^{n \times n} ARn×n B ∈ R m × m B \in \R^{m \times m} BRm×m, r a n k ( A ) = r a n k ( B ) rank(A)=rank(B) rank(A)=rank(B),显然,A和B都是对称半正定矩阵,且A有n个特征向量,B有m个特征向量。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值