导言
我们都知道关节一般会导致(驱动)机械臂产生两种状态:平移或者转动。也知道我们需要借助坐标系来描述物体的姿态和位置信息,那如何为一整个机械臂建立一个完整的坐标系,从而能够求解每个关节通过平移/旋转多少值让机械臂最终拿到我们的目标物品呢?在这里需要借助DH表达法来定义我们的坐标系的作法,并且给出需要求解的数值(平移/旋转
)在空间上的表达。
本节是学习正逆向运动学的基础。
D-H表达法(Denavit-Hartenberg)
DH表达法有两个通用版本,一个是标准版(standard),一个是craig版本,在这先使用craig版本作解释。
一般(驱动)关节(joint)分为两种:转轴(R型,revolute)或者 滑动杆 / 平移(P型,prismatic)
目录
如何构建DH表格
构建DH表格首先需要画出坐标系,然后根据坐标系的数据做表。
(1)如何确定 轴?
首先找到每个关节的转动/平移方向
平移关节 : 沿着平移方向画 轴
转轴关节 :垂直转动方向做 轴
注:方向不唯一,全凭喜好或条件选择轴向正负
可以看到这个机械臂由转动、平移、转动关节组成,即所谓的RPR类型机械臂。
(2)如何确定 轴?
上过高中的一定知道啦,空间中的两条线一定能找到一条线与它们都垂直。
找到一条与关节 、关节
的
轴都垂直并相交的线,这条线就是
轴 。
注:方向不唯一,全凭喜好或条件选择轴向正负
需要注意的是( 下面的(5) 解释了 是个什么东西 ):
与
不在同一平面上时:
≠0,
轴沿着这条线。
与
在同一平面上:
=0
(3)如何确定 轴?
已知 轴、
轴,与它们两两垂直的就是
轴。(符合坐标系的右手定则)