机械臂 DH参数

DH参数

简介

机械臂 DH 参数是由迪拉维特(Denavit)和哈滕贝格(Hartenberg)于 1955 年提出的,用于描述串联式机械臂连杆和关节几何关系的系统方法。说白了,就是该值越精确,机械臂的精度就越高。
以下是对其的详细介绍:

1. DH 参数定义

  • 连杆长度:

两个关节轴之间的公共法线长度,用 ai−1表示,是标量,表征了连杆 i−1 的长度特性,确定了相邻关节轴在空间中的平移关系。

  • 连杆扭转角:

一个关节轴相对于另一个关节轴绕它们公共法线旋转的角度,记为 αi−1,描述了相邻关节轴在空间中的旋转关系。

  • 连杆偏移:

一个关节与下一个关节的公共法线和它与上一个关节的公共法线沿这个关节轴的距离,用 di 表示,是沿着关节轴方向的有向距离,体现了相邻关节在轴向上的相对位置变化。

  • 关节转角:

一个关节与下一个关节的公共法线和它与上一个关节的公共法线绕这个关节轴的转角,用 θi 表示,是描述关节运动的变量,对于转动关节,它是关节的旋转角度;对于移动关节,它通常为常数。

2. 坐标系建立

  • 确定原点:

原点为本关节与下一关节公共法线和本关节轴的交点,如果是最后一个关节,则为前一个关节与本关节公共法线与本关节轴的交点。

  • 确定 z 轴:

z 轴从原点出发,与关节的轴重合。通常尽量使当前 z 轴与上一个已确定的 z 轴夹角为 0° 而非 180°,最后一个关节的 z 轴若能与末端执行器的 z 轴重合则选择重合。

  • 确定 x 轴:

x 轴为本关节轴指向下一关节轴的公共法线,与两个关节的轴都垂直。当两条 z 轴相交时,选择 x 轴方向使当前 z 轴与下一个 z 轴的夹角(即连杆扭转角)为正且小于 180°;当两条 z 轴平行或重合时,x 轴选择尽量与前后一致。y 轴由右手定则确定。

3. DH 参数的作用

  • 运动学建模:

通过 DH 参数,可以建立机械臂的运动学模型,推导出机械臂末端执行器的位置和姿态与各个关节变量之间的关系,从而实现对机械臂运动的精确控制和规划。

  • 轨迹规划:

在进行机械臂的轨迹规划时,需要知道机械臂各关节的运动范围和运动特性,DH 参数提供了这些信息,有助于规划出合理的运动轨迹,避免机械臂在运动过程中发生碰撞或超出关节极限。

  • 动力学分析:

DH 参数也是进行机械臂动力学分析的基础,通过它可以计算出机械臂各连杆的质量、惯性矩等动力学参数,进而建立动力学方程,分析机械臂在运动过程中的受力情况和能量消耗,为机械臂的设计和控制提供依据。

·
·
·
·
·

<think>好的,我需要帮助用户解决关于MATLAB中三轴机械DH参数建模与仿真的问题。首先,用户提到了DH参数,需要明确是标准DH还是改进型DH,因为引用[2]提到了两者的区别。根据引用[1]中的示例,使用的是改进型DH法('modified'),所以可能需要优先考虑这种方法。 接下来,用户需要具体的实现步骤和代码示例。根据引用[1],使用Link类创建每个连杆的参数,然后通过SerialLink类组合成机械模型。需要详细说明每个参数的含义,例如a0、d、a1等,可能需要解释这些参数对应的DH表中的哪些部分。 另外,引用[3]提到用户可能在理解如何将数学公式转化为MATLAB代码时有困难,因此需要逐步解释代码的逻辑,并强调关键步骤,比如正运动学计算和仿真。可能需要提到如何验证模型是否正确,比如通过fkine函数测试。 还需要考虑生成相关问题,这些问题应该覆盖用户可能进一步询问的方向,如参数调整、仿真扩展、与其他工具箱结合等。同时,确保引用正确,每个引用在回答中的使用都要在末尾添加标识符。 最后,检查回答是否符合系统级指令,特别是LaTeX格式的使用是否正确,独立公式是否用$$...$$,以及代码块是否正确呈现。确保回答结构清晰,逐步引导用户完成建模和仿真的过程,并保持语言简洁明了。</think>### MATLAB三轴机械DH参数建模与仿真 #### 1. DH参数建模基础 在机器人学中,DH(Denavit-Hartenberg)参数法通过四个参数描述相邻连杆间的空间关系:$a_i$(连杆长度)、$\alpha_i$(连杆扭角)、$d_i$(连杆偏移)和$\theta_i$(关节角度)。根据引用[2],**标准DH**与**改进型DH**的区别在于坐标系定义方式: - **标准DH**:坐标系固定在连杆的**输出端**,常用于经典教材如《机器人学导论》[^2]。 - **改进型DH**:坐标系固定在连杆的**输入端**,更适合串联机械建模[^1]。 #### 2. 三轴机械建模步骤 **步骤1:建立DH参数表** 假设三轴机械关节类型为旋转关节($\theta_i$为变量),其DH参数示例如下: | 关节 | $a_i$ | $\alpha_i$ | $d_i$ | $\theta_i$ | |------|-------|------------|-------|------------------| | 1 | 0 | 0 | 0 | $\theta_1$ (变量)| | 2 | a1 | -π/2 | 0 | $\theta_2$ (变量)| | 3 | a2 | 0 | 0 | $\theta_3$ (变量)| **步骤2:MATLAB代码实现** ```matlab % 使用改进型DH法建模 L(1) = Link([0, 0, 0, 0], 'modified'); % 关节1:a=0, α=0, d=0, θ=θ1 L(2) = Link([0, 0, a1, -pi/2], 'modified'); % 关节2:a=a1, α=-π/2 L(3) = Link([0, 0, a2, 0], 'modified'); % 关节3:a=a2, α=0 % 创建机械模型 Three_Link = SerialLink(L, 'name', '3R Robot'); Three_Link.teach(); % 启动交互式示教界面 ``` **代码说明**: - `Link`类参数顺序为:`[θ, d, a, α]`,其中$\theta$和$d$根据关节类型(旋转/平移)决定是否为变量。 - `SerialLink`将连杆组合为串联机械模型。 #### 3. 仿真与验证 - **正运动学计算**:通过`fkine`函数验证末端位姿: ```matlab q = [pi/4, pi/6, -pi/3]; % 关节角度示例 T = Three_Link.fkine(q); % 计算末端齐次变换矩阵 ``` - **可视化**:使用`plot`函数生成运动轨迹: ```matlab Three_Link.plot(q); % 绘制机械姿态 ``` #### 4. 扩展应用 结合Simulink进行动力学仿真,或通过`inverseKinematics`类实现逆运动学求解,进一步控制机械轨迹[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

展定衢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值